

Maker	Innovations	Series

Jump start your path to discovery with the Apress Maker Innovations
series! From the basics of electricity and components through to the
most advanced options in robotics, Machine Learning, and even the
metaverse, you’ll forge a path to building ingenious hardware and
controlling it with cutting-edge software. All while gaining new skills
and experience with common toolsets you can take to new projects or
even into a whole new career.

The Apress Maker Innovations series offers project-based learning
with a strong foundation in theory and best practices. So you get hands-
on experience while also learning the key concepts, terminology, and
creative processes that professionals such as entrepreneurs, inventors,
and engineers, use when developing and executing hardware projects.
You can learn to design circuits, program AI, create IoT systems for your
home or even city, or build immersive environments for the Metaverse.
Each book provides the building blocks to bring your ideas to life, and
so much more!

Whether you’re a beginning hobbyist or a seasoned entrepreneur
working out of your basement or garage, you’ll scale up your skillset to
become a hardware design and engineering pro. And often using low-
cost and open-source software such as Raspberry Pi, Arduino, PIC
microcontroller, and Robot Operating System (ROS). Programmers and
software engineers will also �ind opportunities to expand their skills, as
many projects use popular languages and operating systems like
Python and Linux.

If you want to build a robot, set up a smart home, assemble a
weather-ready meteorology system, create a brand-new circuit using
breadboards and design software, or even build anything with LEGO,
this series has all that and more! Written by creative and seasoned
Makers, every book tackles both tested and leading-edge approaches
and technologies, for bringing your visions and projects to life.

More information about this series at
https://link.springer.com/bookseries/17311

https://link.springer.com/bookseries/17311

Stephen Smith

RP2040	Assembly	Language
Programming
Including	the	RP2350	and	Raspberry	Pi	Pico	2
Second Edition

Stephen Smith
Gibsons, BC, Canada

ISSN 2948-2542 e-ISSN 2948-2550
Maker Innovations Series
ISBN 979-8-8688-2201-8 e-ISBN 979-8-8688-2202-5
https://doi.org/10.1007/979-8-8688-2202-5

© Stephen Smith 2022, 2026

This work is subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, speci�ically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on micro�ilms or in
any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a speci�ic statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and accurate
at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions that may have
been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional af�iliations.

This Apress imprint is published by the registered company APress
Media, LLC, part of Springer Nature.

https://doi.org/10.1007/979-8-8688-2202-5

The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

This	book	is	dedicated	to	my	beloved	wife	and	editor,	Cathalynn	Labonté-
Smith.

Introduction
There is an explosion of DIY electronics projects, largely fueled by
Arduino-based microcontrollers and Raspberry Pi computers.
Electronics projects have never been easier to build, with hundreds of
inexpensive modular components to choose from. People design robots,
home monitoring and security systems, game devices, musical
instruments, audio systems, and lots more. The Raspberry Pi Pico is the
Raspberry Pi Foundation’s entry into the Arduino-style microcontroller
market. A regular Raspberry Pi computer runs Linux and typically costs
from $35 to $100 depending on memory and accessories. The
Raspberry Pi Pico costs $4 and doesn’t run an operating system.

To power the Raspberry Pi Pico, the Raspberry Pi Foundation
designed a custom System on a Chip (SoC), called the RP2040,
containing dual ARM Cortex-M0+ CPUs along with a raft of device
controller components. This combination of a powerful CPU and ease of
integration has made this a great choice for any DIY project. Further,
Raspberry sells the RP2040 chips separately, and other companies such
as Seeed Studio, Adafruit, and Pimoroni are selling their own versions
of this microcontroller with extra built-in features like Bluetooth or Wi-
Fi. The RP2040 chips can even be purchased for approximately $1 each
to build your own board.

At the basic level, how are these microcontrollers programmed?
What provides the magical foundation for all the great projects that
programmers build with them? Raspberry provides a Software
Developer’s Kit (SDK) for C programmers as well as support for
programming in MicroPython. This book answers these questions and
delves into how these are programmed at the bare metal level and
provides insight into the RP2040’s architecture.

Assembly Language is the native, lowest-level way to program a
computer. Each processing chip has its own Assembly Language. This
book covers programming the ARM Cortex-M0+ 32-bit Processor. To
learn how a computer works, learning Assembly Language is a great
way to get into the nitty-gritty details. The popularity and low cost of
microcontrollers like the Raspberry Pi Pico provide ideal platforms to
learn advanced concepts in computing.

Even though all these devices are low-powered and compact,
they’re still sophisticated computers with a multi-core processor,
programmable I/O processors, and integrated hardware controllers.
Anything learned about these devices is directly relevant to any gadget
with an ARM processor that by volume is the number one processor on
the market today.

In this book, how to program ARM Cortex-M0+ processors at the
lowest level, operating as close to the hardware as possible, is covered.
How to do the following will be learned:

Format instructions and combine them into programs, as well as the
formats of operative binary data.
Program the built-in programmable I/O, division, and interpolation
coprocessors.
Control the integrated hardware devices by reading and writing to
the hardware control registers directly.
Interact with the RP2040 SDK.

The simplest way to learn these tasks is with a Raspberry Pi Pico
connected to a Raspberry Pi running the Raspberry Pi OS, a version of
Linux. This provides all the tools needed to learn Assembly Language
programming. All the software required for this book is open source
and readily available on the Raspberry Pi.

This book contains many working programs to play with, use as a
starting point, or study. The only way to learn programming is by doing,
so don’t be afraid to experiment as it is the only way to learn.

Even if Assembly programming isn’t used in day-to-day life,
knowing how the processor works at the Assembly Language level and
the low-level binary data structures will make for better programming
in all other areas. Knowing how the processor works will translate to
writing more ef�icient C code and can even help with Python
programming.

Enjoy this introduction to Assembly Language. Learning it for one
processor family helps with learning and using any other processor
architectures encountered throughout a programmer’s career.

Introduction	to	the	Second	Edition

Since the release of the �irst edition, the Raspberry Pi Organization has
released an updated version of their custom chip, namely, the RP2350.
Then, based on the RP2350 is the Raspberry Pi Pico 2. As a result, this
book often refers to the Pico-series to cover both the Pico 1 and Pico 2.
The RP2350 is based on the newer ARM Cortex M33, which runs faster,
has more memory, and includes a single-precision �loating-point unit.

Over the same time period, Raspberry has updated their C/C++
SDK, with the most notable addition being to the Visual Studio (VS)
Code extension—a popular and productive way to develop software for
the Raspberry Pi Pico-series. Some of the main features in this addition
include
1.

Instructions to using Visual Studio Code
2.

How to program the RP2350 �loating-point unit
3.

How to use some advanced M33 instructions like the division
instructions

4.

How to enable the pads for the RP2350 due to the new electrical
isolation feature

5.

How to perform debugging via the Raspberry Pi Debug Probe
Source	Code	Location
The source code for the example code in the book is located on the
Apress GitHub site at the following URL:

https://github.com/Apress/RP2040-Assembly-
Language-Programming-Second-Edition

The code is organized by chapter and includes answers to the
programming exercises.

https://github.com/Apress/RP2040-Assembly-Language-Programming-Second-Edition

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub via the book’s
product page, located at www.apress.com/979-8-8688-2201-8. For
more detailed information, please visit
https://www.apress.com/gp/services/source-code.

Acknowledgments
No book is ever written in isolation. I want to especially thank my wife,
Cathalynn Labonté-Smith, for her support, encouragement, and expert
editing.

I want to thank all the good folk at Apress who made the whole
process easy and enjoyable. A special shout-out to Jessica Vakili, my
coordinating editor, who kept the whole project moving quickly and
smoothly. Thanks to Stewart Watkiss, my technical reviewer, who
helped make this a far better book.

Table	of	Contents
Chapter	1:		How	to	Set	Up	the	Development	Environment
About	the	Pico	Families
About	the	Raspberry	Pi	Pico-series
About	the	Host	Computer
About	the	Raspberry	Pi	Debug	Probe
How	to	Solder	and	Wire
How	to	Install	Software
Using	Visual	Studio	Code
Installing	the	Full	SDK
A	Simple	Program	to	Ensure	Things	Are	Working
Create	Some	Helper	Script	Files
Summary

Chapter	2:		The	First	Assembly	Language	Program
Ten	Reasons	to	Use	Assembly	Language
Computers	and	Numbers
ARM	Assembly	Instructions
CPU	Registers
ARM	Instruction	Format
RP2040/	RP2350	Memory
About	the	GCC	Assembler
Hello	World
With	Visual	Studio	Code
With	the	Pico-series	C/	C++	SDK
Our	First	Assembly	Language	File

About	the	Starting	Comment
Where	to	Start
Assembly	Instructions
Data
Program	Logic
Reverse	Engineering	the	Program
Summary
Exercises

Chapter	3:		How	to	Build	and	Debug	Programs
CMake
GNU	Make
Print	Statements
GDB
Using	the	VS	Code	Extension
Preparing	to	Debug
Beginning	GDB
Summary
Exercises

Chapter	4:		How	to	Load	and	Add
About	Negative	Numbers
About	Two’s	Complement
About	the	Raspberry	Pi	OS	Calculator
About	One’s	Complement
Big-	versus	Little-Endian
About	Bi-Endian

Pros	of	Little-Endian
Cons	of	Little-Endian
How	to	Shift	and	Rotate	Registers
About	the	Carry	Flag
Basics	of	Shifting	and	Rotating
How	to	Use	MOV
Move	Immediate
Moving	Data	from	One	Register	to	Another
ADD/	ADC
Add	with	Carry
SUB/	SBC
Shifting	and	Rotating
Loading	All	32	Bits	of	a	Register
MOV/	ADD/	Shift	Example
Summary
Exercises

Chapter	5:		How	to	Control	Program	Flow
Unconditional	Branch
About	the	CPSR
Branch	on	Condition
About	the	CMP	Instruction
Loops
FOR	Loops
WHILE	Loops
If/	Then/	Else
Logical	Operators

AND
EOR
ORR
BIC
MVN
TST
Design	Patterns
Converting	Integers	to	ASCII
Using	Expressions	in	Immediate	Constants
Storing	a	Register	to	Memory
Why	Not	Print	in	Decimal?	
Performance	of	Branch	Instructions
Summary
Exercises

Chapter	6:		Thanks	for	the	Memories
How	to	De�ine	Memory	Contents
How	to	Align	Data
How	to	Load	a	Register
How	to	Load	a	Register	with	an	Address
How	to	Load	Data	from	Memory
Optimizing	Small	Read-Only	Data	Access
Indexing	Through	Memory
How	to	Store	a	Register
How	to	Convert	to	Uppercase
How	to	Load	and	Store	Multiple	Registers
Summary

Exercises

Chapter	7:		Calling	Functions	and	Using	the	Stack
About	Stacks	on	the	Pico-series
How	to	Branch	with	Link
About	Nesting	Function	Calls
About	Function	Parameters	and	Return	Values
How	to	Manage	the	Registers
Summary	of	the	Function	Call	Algorithm
More	on	the	Branch	Instructions
About	the	X	Factor
Uppercase	Revisited
About	Stack	Frames
Stack	Frame	Example
How	to	De�ine	Symbols
How	to	Create	Macros
About	the	Include	Directive
How	to	De�ine	a	Macro
About	Labels
Why	Macros?	
Summary
Exercises

Chapter	8:		Interacting	with	C	and	the	SDK
How	to	Wire	Flashing	LEDs
How	to	Flash	LEDs	with	the	SDK
How	to	Call	Assembly	Routines	from	C

How	to	Embed	Assembly	Code	Inside	C	Code
Summary
Exercises

Chapter	9:		How	to	Program	the	Built-In	Hardware
About	the	Pico-series	Memory	Map
About	C	Header	Files
About	the	Raspberry	Pi	Pico	Pins
How	to	Set	a	Pin	Function
About	Hardware	Registers	and	Concurrency
About	Programming	the	Pads
About	RP2350	Pad	Isolation
How	to	Initialize	SIO
How	to	Turn	a	Pin	On/	Off
The	Complete	Program
Summary
Exercises

Chapter	10:		How	to	Initialize	and	Interact	with	Programmable	I/	O
About	the	PIO	Architecture
About	the	PIO	Instructions
Flashing	the	LEDs	with	PIO
PIO	Instruction	Details	and	Examples
JMP
WAIT
IN
OUT

PUSH
PULL
MOV
IRQ
SET
About	Controlling	Timing
About	the	Clock	Divider
About	the	Delay	Operand
About	Side-Set
More	Con�igurable	Options
Summary
Exercises

Chapter	11:		How	to	Set	and	Catch	Interrupts
Overview	of	the	Pico-series	Interrupts
About	the	RP2040	versus	the	RP2350
About	the	Pico-series’	Interrupts
About	the	Interrupt	Vector	Table
About	Saving	Processor	State
About	Interrupt	Priorities
Flashing	LEDs	with	Timer	Interrupts
About	the	RP2040	Alarm	Timer
Setting	the	Interrupt	Handler	and	Enabling	IRQ0
The	Complete	Program
About	the	SVCall	Interrupt
Using	the	SDK
Summary

Exercises

Chapter	12:		Multiplication,	Division,	and	Floating	Point
Multiplication
Division
Interpolation
Adding	an	Array	of	Integers
Interpolating	Between	Numbers
Floating	Point
De�ining	Floating-Point	Numbers
About	Floating-Point	Registers
Loading	and	Saving	FPU	Registers
Basic	Arithmetic
Sample	Floating-Point	Program
Some	Notes	on	C	and	printf
Summary
Exercises

Chapter	13:		Multiprocessing
About	Saving	Power
About	Interprocessor	Mailboxes
How	to	Run	Code	on	the	Second	CPU
A	Multiprocessing	Example
About	Fibonacci	Numbers
About	Factorials
The	Complete	Program
About	Spinlocks

Regulating	Access	to	a	Memory	Table
A	Word	on	the	SDK
Summary
Exercises

Chapter	14:		How	to	Connect	Pico	to	IoT
About	the	Pico-series	Built-In	Temperature	Sensor
About	Home-Brewed	Communications	Protocol
About	the	Server	Side	of	the	Protocol
About	the	Pico-series	UART
Converting	Integers	to	ASCII
Viewing	the	Main	Program
About	IoT,	Wi-Fi,	Bluetooth,	and	Serial	Communications
Summary
Exercises

Appendix	A:		ASCII	Character	Set
Appendix	B:		Assembler	Directives
Appendix	C:		Binary	Formats
Appendix	D:		The	ARM	Instruction	Set
Appendix	E:		Answers	to	Exercises
Index

About	the	Author
Stephen	Smith
is the author of the Apress titles
Raspberry	Pi	Assembly	Language
Programming and Programming	with	64-
Bit	ARM	Assembly	Language. He is a
retired software architect, located in
Gibsons, BC, Canada. He’s been
developing software since high school, or
way too many years to record. He was
the chief architect for the Sage 300 line
of accounting products for 23 years.
Since retiring he has pursued Arti�icial
Intelligence; earned his Advanced HAM
Radio License; enjoys mountain biking,
hiking, and nature photography; and is a
member of the Sunshine Coast Search
and Rescue group. He continues to write
his popular technology blog at smist08.wordpress.com and has written
two science �iction novels in a series, In�luence and Uni�ication, available
on Amazon.com.

About	the	Technical	Reviewer
Stewart	Watkiss
is a keen maker, programmer, and author of Learn	Electronics	with
Raspberry	Pi. He studied at the University of Hull, where he earned a
master’s degree in electronic engineering, and more recently at Georgia
Institute of Technology, where he earned a master’s degree in computer
science.

Stewart also volunteers as a STEM ambassador, helping teach
programming and physical computer to school children and at
Raspberry Pi events. He has created a number of resources using
Pygame Zero, which he makes available on his website
(www.penguintutor.com).

http://www.penguintutor.com/

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_1

1.	How	to	Set	Up	the	Development
Environment
Stephen Smith1

Gibsons, BC, Canada

About the Pico Families
About the Raspberry Pi Pico-series
About the Host Computer
About the Raspberry Pi Debug Probe
How to Solder and Wire
How to Install Software
Using Visual Studio Code
Installing the Full SDK
A Simple Program to Ensure Things Are Working
Create Some Helper Script Files
Summary

This chapter is concerned with physically setting up the Raspberry Pi
Pico 2 on a breadboard and wiring it up to a host computer to
effortlessly program and debug programs, as well as hooking up other
components as they’re encountered. The Getting	started	with	Raspberry
Pi	Pico-series guide (from the Raspberry Pi Organization’s website) is
an excellent reference on how to do these fundamental tasks. That
content is not duplicated here; instead, the important parts that are
required for Assembly Language programming are pointed out to
debug and play with the sample programs in this book.

https://doi.org/10.1007/979-8-8688-2202-5_1

To run most of the programs in this book, the following equipment
is needed:

A Raspberry Pi Pico (1 or 2)
A Raspberry Pi Debug Probe
An electronics breadboard
Pins to attach the Pico to the breadboard
Miscellaneous connecting wires
A selection of LEDs
A soldering iron and solder or an “H” series Pico
A Raspberry Pi 4 or 5 running the Raspberry Pi OS

About	the	Pico	Families
Microcontrollers like the Raspberry Pi Pico 2 are typically utilized as
the brains for smart devices, like microwave ovens, dishwashers, home
security systems, weather stations, or irrigation monitors and
controllers. At best they have a small display and perhaps a couple of
buttons for taking commands; however, they are still fully functioning
computers. The programs that run on them can be quite powerful and
sophisticated. Since microcontrollers usually don’t have a keyboard,
mouse, or monitor, their programs are developed on a regular
computer, known as a host computer, and then uploaded to the
microcontroller to test and �inally deploy them.

The Raspberry Pi Organization has two families of microcontrollers:
The	Pico	1	family: Built around Raspberry’s RP2040 ARM CPU
The	Pico	2	family: Built around Raspberry’s RP2350 ARM CPU

Each of these families consists of various models, where a “W” after
the name indicates wireless support including Wi-Fi and Bluetooth and
an “H” after the name indicates pre-soldered headers. The four digits
after the RP indicate the number and type of CPU cores along with the
amount of memory.

When reading this book, there could well be additional members in
this family of processors; however, most of the content will apply to
these as well.

Not only are the RP2040 and RP2350 chips the heart of the
Raspberry Pi Pico families, but Raspberry also sells these chips to other

manufacturers, including Adafruit, Arduino, Seeed Studio, SparkFun,
and Pimoroni. These other companies produce boards like the
Raspberry Pi Picos but with different feature sets, for instance, in
different form factors or with different connectors to easily integrate
into other modular systems.

In this book, when the RP2040 or RP2350 is referred to, it applies to
all the brands of RP2040- or RP2350-based boards. However, in some
cases a speci�ic board is talked about to discuss Wi-Fi or a speci�ic
wiring connection for one board.

Note The RP2350 contains two RISC-V CPU cores in addition to the
two ARM cores. This book covers how to program the ARM CPUs in
ARM Assembly Language. The RISC-V cores are a different Assembly
Language and require a separate book such as RISC-V	Assembly
Language	Programming by Stephen Smith also from Apress.

Programming the RP2040 or RP2350 in Assembly Language is the main
emphasis of this book, but this is best done by studying real working
programs. To do this, the microcontroller needs to be connected to
various pieces of hardware. This way programs that perform useful
tasks can be seen, and all the �lexible and powerful features of the
RP2040/RP2350 can be learned including how to connect to external
sensors, controllers, and communication channels. To begin, a
Raspberry Pi Pico 2 is set up on an electronics breadboard, so it can
easily be wired to various devices.

About	the	Raspberry	Pi	Pico-series
The heart of the Raspberry Pi Pico-series is a chip developed by
Raspberry and ARM. There are now two �lavors of this chip, the older
RP2040 and the newer RP2350. Each chip is a System on a Chip (SoC)
that contains dual-core ARM Cortex CPUs, SRAM, a USB port, and
support for several hardware devices. Compared with a full computer
like the regular Raspberry Pi, the Raspberry Pico-series lacks a video
output port, an operating system, and connectors for a keyboard and
mouse. But it is possible to connect displays and input devices to the
Raspberry Pi Pico through its GPIO pins. The specialty connections and

input devices aren’t used for general-purpose computing; rather, they
solve speci�ic problems, such as powering a vending machine or
monitoring a greenhouse.

Unlike the CPUs found in desktop and laptop computers, the
RP2040/RP2350 doesn’t support advanced modules like a vector
processing unit, a virtual memory controller, or a graphic processing
unit. However, one thing it has that regular CPUs lack is a set of eight
programmable I/O (PIO) coprocessors. These PIOs have their own
Assembly Language and can handle many I/O protocols and tasks
independent of the two CPU cores. These are covered in Chapter 10. If a
Pico-series board is already wired up and how to download and debug
C programs is understood, then skip ahead to Chapter 2.

The RP2040/RP2350 may look underpowered when comparing it
with a modern Intel, AMD, or ARM processor, but for the price it is quite
a powerful computer. Table 1-1 compares the RP2040 and RP2350 with
some older and newer computers as well as competitors’
microcontrollers.

Table	1-1 Comparison of the processing power of the RP2040 and RP2350

Computer CPU Speed	(MHz) Memory	(kB) Bits Cores

Apple	II MOS 6502 1 48 8 1

IBM	PC Intel 8088 4.77 640 16 1

Arduino	Nano	R4 ARM M4 48 32 32 1

Arduino	Due ARM M3 84 96 32 1

RP2040 ARM	M0+ 133 264 32 2

RP2350 ARM	M33 150 520 32 2

Pi	Zero ARM A53 1024 524,288 32 1

Pi	5 ARM A76 2400 16,777,216 64 4

About	the	Host	Computer
Since microcontrollers don’t have a keyboard, a display, or even an
operating system, their programs are written on a host computer. For
RP2040/RP2350- based microcontrollers, this could be on a MacOS,
Windows, or Linux-based computer. The Raspberry Pi Pico-series

documentation has instructions on how to connect them to all these
platforms. The easiest solution is to use a Raspberry Pi 5 as the host
versus using a Windows or Mac computer. Raspberry has made this
easy with a complete installation script and clear instructions on how
to wire the Raspberry Pi 5 and Raspberry Pi Pico-series together.

About	the	Raspberry	Pi	Debug	Probe
USB ports are a wonderful invention because they allow all sorts of
devices to be easily connected. Raspberry Pi Pico-series boards have a
USB port that connects to the host computer. This permits programs to
be downloaded to the Pico-series board to run and lets messages return
to the host computer. This is great, but there is a problem when a
program needs to be debugged. For a USB connection to work properly,
the CPU must continually communicate with it, or the device becomes
disconnected. When debugging a program, the debugger needs to stop
the program executing so that the registers and memory can be
examined. On full computers with multi-tasking operating systems, this
isn’t a problem as other programs maintain the USB ports while the
program being developed is debugged. But beware that on the
Raspberry Pi Pico-series board, there is only one program running, so
when the debugger stops this program, it stops everything on the
board.

The solution to this problem is to not use the USB port for
debugging; instead, there are separate debug pins for the debugger to
control the board and serial communications via a UART for messaging.
The serial communications ports don’t require continual attention, so
don’t react when the CPU is stopped. In the �irst edition of this book,
this required wiring pins from a Raspberry Pi 4’s GPIO pins to the
Raspberry Pi Pico’s debug pins and UART pins. This was cumbersome
and presented a problem for programmers wanting to use a regular
Windows, MacOS, or Linux computer as their host computer.

To solve this problem, Raspberry invented the Raspberry Pi Debug
Probe. This is a device containing an RP2040 chip running a custom
program whose job is to mediate between the Raspberry Pi Pico-series
debug and UART pins and the host computer’s USB port. The processor
on the Debug Probe keeps the USB connection alive and translates the

data between the host’s USB connection and the Pico’s debug and serial
ports. With this new feature, it’s easy to develop and debug programs
from any Windows, MacOS, or Linux-based computer for the Raspberry
Pi Pico-series. This makes wiring up the Pico-series board to a
Raspberry Pi 5 easier as well.

This book will assume the use of a Raspberry Pi Debug Probe;
however, feel free to follow Raspberry’s instructions for other possible
solutions.

How	to	Solder	and	Wire
It is possible to get by without doing any soldering if purchasing the “H”
version of the Raspberry Pi Pico 1 or 2, which has header pins pre-
soldered to the board making it ready to press into an electronics
breadboard. Similarly, with a Raspberry Pi Debug Probe, soldering to
the debug pins can sometimes be avoided. One way or another, the
Raspberry Pi Pico needs to be connected to external devices. Without
this, programs can be downloaded to the Pico-series, the onboard LED
can be �lashed, and data can be sent back out the USB port to the host
computer. However, even to debug a program, some external
connections are required.

Often the “H” series Picos with the pre-soldered headers are sold
out or are sometimes a bit expensive just to save some soldering. The
easiest way to experiment with a Pico is to have it connected to an
electronics breadboard, which requires headers attached to the board
either included or hand soldered.

Typically, a new Pico-series board would be soldered into a �inal
project directly. At $4 each (at the time of this writing), there isn’t a
signi�icant overhead in having a development board and adding new
boards to the package when �inished. To perform debugging requires
soldering pins to the three debugging connections on the end of the
board, if they didn’t come pre-installed. The minimum wiring needed
are the following four connections between the Pico and the Raspberry
Pi 5:
1.

A micro-USB cable connecting the Pico-series to the host computer

2. A micro-USB cable connecting the Raspberry Pi Debug Probe to the
host computer

3.
The three Pico-series debug pins connected to the Raspberry Pi
Debug Probe

4.

Three pins connecting a serial port on the Pico-series to the
Raspberry Pi Debug Probe

Please refer to Getting	started	with	Raspberry	Pi	Pico-series for the

full details.
Don’t fear soldering; it is quite simple and fun. The main trick is to

heat up the area where the solder should go and touch a bit of solder
there. Don’t melt it onto the soldering iron’s tip and then try to drip it
from there. Figure 1-1 shows the wiring of a Raspberry Pi Pico 2
connected to a Raspberry Pi Debug Probe. The two USB cables then
connect to the Raspberry Pi 5 host computer.

Figure	1-1 A Raspberry Pi Pico 2 installed in a breadboard and connected to a Raspberry Pi
Debug Probe. The USB cables connect to the Raspberry Pi 5 host computer

Note If using an RP2040/RP2350 board from another vendor, then
it is likely that the pins are in different locations, and the wiring
needs to be adapted for the location of the pins.

How	to	Install	Software
If using a Raspberry Pi with the Raspberry Pi OS as the host computer,
then this is straightforward. This simpli�ies installation, since it runs
32-bit ARM code and shares development tools with the Raspberry Pi
Pico-series and other RP2040/RP2350-based boards.

The Getting	started guide includes instructions for working with
Visual Studio Code. The easiest way to get up and running is to install
Visual Studio Code and to add the Raspberry Pi Pico-series extension,
which installs everything needed. This book also covers installing the
Pico-series SDK separately and then working with text �iles that can be
edited in any editor, using cmake and make for building, gdb (GNU
debugger) and openocd for debugging, and minicom for
communications.

Using	Visual	Studio	Code
To install Visual Studio Code and a few other required dependencies,
use the following commands:

sudo apt update
sudo apt install code

Now run Visual Studio Code; �ind the extensions marketplace, as
shown in Figure 1-2; and install the Raspberry Pi Pico code extension.

Figure	1-2 The Raspberry Pi Pico extension in the Visual Studio Code marketplace

Installing	the	Full	SDK
The Visual Studio Code extension places a minimal copy of the Pico-
series SDK under each project. This is required since any parts of the
SDK used in the project need to be compiled into the �inal executable.
However, the full SDK can be installed into a central location and then
shared by various separate projects. If the host computer is a Raspberry
Pi, this is simple to set up as there is a shell script that can be run to do
the whole job. “Appendix C: Manual toolchain setup” in the Getting
started	with	Raspberry	Pi	Pico-series guide explains this process and
provides the necessary steps.

A	Simple	Program	to	Ensure	Things	Are
Working

The easiest way to ensure everything is working is to compile and play
with a couple of the SDK examples. The Getting	started	with	Raspberry
Pi	Pico-series book has a walk-through on how to do this. Here, rather
than duplicate, a list of the key things needed throughout this book is
provided. Using either Visual Studio Code or the standalone SDK is �ine,
though Visual Studio Code automates some of these processes. Here’s a
list of the prerequisite skills:

How to load and run a program. Visual Studio Code will either do this
automatically or give an error that the Pico needs to be powered on
and off holding down the bootsel button. Using the standalone SDK
the Pico needs to be powered off and on while holding down the
bootsel button, and then the program must be manually copied to
the shared drive.
How to compile a program to either send its output to the USB or
serial port. Visual Studio Code has a dialog to specify this; for the
standalone SDK, the CMakeLists.txt �ile needs to be edited.
How to display output from the Pico either using Visual Studio Code’s
monitor pane or using minicom to display the output that the Pico is
sending.
How to compile a program for debug.
How to debug a program, either using Visual Studio Code or using
openocd and gdb.

Tip Building a program requires running both cmake and make. It
isn’t always clear which part does what command. If a con�iguration
change is made, it is best to delete and recreate the build folder
ensuring everything is built from scratch.

Create	Some	Helper	Script	Files
When following along with the Getting	started	with	Raspberry	Pi	Pico-
series guide, there are many long command lines to type in (or to
copy/paste). It saves signi�icant time to create a collection of small shell
scripts to automate the common tasks. These can be placed in
$HOME/bin. Then add

export PATH=$PATH:$HOME/bin

to the end of the $HOME/.bashrc �ile. These all need to be made
executable with

chmod +x filename

First, a script for minicom—one to listen on either the USB or UART
for text messages:

File	m-usb:

minicom -b 115200 -o -D /dev/ttyACM0

File	m-uart:

minicom -b 115200 -o -D /dev/serial0

Note If using the Raspberry Pi Debug Probe, then m-usb will
always be used as the Debug Probe’s job is to turn UART traf�ic into
USB traf�ic.

To build debug, a helpful script is cmaked containing

cmake -DCMAKE_BUILD_TYPE=Debug ..

To ensure openocd is fully installed, run

sudo apt install openocd

To run openocd, ready to accept connections from gdb, the script
ocdg containing

sudo openocd -f interface/cmsis-dap.cfg -f

is helpful. This version is for using the Raspberry Pi Debug Probe
and a Raspberry Pi Pico 2. If debugging via a different method or using
a different board, then different cfg �iles are required. Note that all the
cfg �iles to choose from are found in the two folders:

$HOME/.pico-sdk/openocd/0.12.0+dev/scripts/target
$HOME/.pico-
sdk/openocd/0.12.0+dev/scripts/interface

When gdb starts, it needs to connect to openocd. This can be
automated by creating a .gdbinit �ile in the $HOME folder. This �ile then
contains

target remote localhost:3333

Note This .gdbinit will be used anytime gdb is started, so if
debugging a local �ile without using openocd is needed, then this �ile
needs to be renamed while this is done.

Summary
This chapter is the starting point for programming the Raspberry Pico-
series board. No Assembly Language programming has been done yet,
but now the development environment is set up to write, debug, test,
and deploy programs written in either C or Assembly Language. The
host computer, say a Raspberry Pi 5, is connected to the Raspberry Pi
Pico-series board through a USB cable and to the Raspberry Pi Debug
Probe through a second USB cable. The Raspberry Pi Pico-series board
is connected to the Raspberry Pi Debug Probe through its serial port
pins and the debugging port pins. The Pico-series board is installed in
an electronics breadboard ready to have other components connected
to it. In Chapter 2, all these tools will be used to start the journey to
writing a program with RP2040/RP2350 Assembly Language.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_2

2.	The	First	Assembly	Language	Program
Stephen Smith1

Gibsons, BC, Canada

Ten Reasons to Use Assembly Language
Computers and Numbers
ARM Assembly Instructions
CPU Registers
ARM Instruction Format
RP2040/RP2350 Memory
About the GCC Assembler
Hello World
With Visual Studio Code
With the Pico-series C/C++ SDK
Our First Assembly Language File
About the Starting Comment
Where to Start
Assembly Instructions
Data
Program Logic
Reverse Engineering the Program
Summary
Exercises

Most of the functionality of a Raspberry Pi Pico-series is contained in the Raspberry-
designed custom RPxxxx chip such as the RP2040 or RP2350. These contain dual-
core ARM Cortex-M-series CPUs such as the Cortex-M0+ or Cortex-M33. The ARM
processor was originally developed by a group in Great Britain who wanted to build a
successor to the BBC Microcomputer used for educational purposes.

The BBC Microcomputer used the 6502 processor, which was a simple processor
with a simple instruction set. The problem was there was no successor to the 6502.
Unhappy with the microprocessors that were around at the time, since they were
much more complicated than the 6502, and not wanting to make another IBM PC
clone, they took the bold move to design their own. They developed the Acorn
computer that used it and tried to position it as the successor to the BBC

https://doi.org/10.1007/979-8-8688-2202-5_2

Microcomputer. The idea was to use Reduced Instruction Set Computer (RISC)
technology as opposed to Complex Instruction Set Computer (CISC) as championed
by Intel and Motorola.

Developing silicon chips is an expensive proposition, and unless it’s at a good
volume, manufacturing is costly. The ARM processor probably wouldn’t have gone
anywhere except that Apple came calling looking for a processor for a new device
they had under development—the iPod. The key selling point for Apple was that as
the ARM processor was RISC, therefore, it used less silicon than CISC processors and
as a result used far less power. This meant it was possible to build devices that ran for
a long time on a single battery charge.

Unlike Intel, ARM doesn’t manufacture chips; it licenses the designs for others to
optimize and manufacture chips. With Apple onboard, suddenly there was a lot of
interest in ARM, and several big manufacturers started producing chips. With the
advent of smartphones, the ARM chip really took off and now is used in pretty much
every phone and tablet and even powers some Chromebooks making it the number
one processor in the computer market.

The designers at ARM are ambitious and architect their processors ranging from
low-cost microcontrollers all the way up to the most powerful CPUs used in
supercomputers. ARM’s line of microcontroller CPUs are the Cortex-M-series. This
book concentrates on the ARM Cortex M0+ used in Raspberry Pi’s RP2040 SoC and
the ARM Cortex-M33 used in the RP2350 SoC.

To make these chips inexpensive, the transistor count is reduced as much as
possible. The M-series CPUs are all 32-bit and have fewer registers and a smaller
instruction set than the full A-series ARM CPUs like those used in the full Raspberry
Pi. The M-series CPUs are optimized to use as little memory as possible as memory
tends to be limited in microcontrollers, again to keep costs down.

This book examines how the Cortex-M-series works at the lowest level and will
often have to deal with the trade-offs made by the chip designers keeping transistor
counts down. There are several optional components available from ARM for these
chips. The ones included in the RP2040 and RP2350, such as the fast integer
multiplier and divider (multiplication and division are an extra), are considered. The
RP2350 even includes a �loating-point unit.

Ten	Reasons	to	Use	Assembly	Language
A Raspberry Pi Pico-series chip can be programmed with MicroPython or C/C++.
These are productive languages that hide the details of all the bits and bytes, keeping
the focus on the application. When programming in Assembly Language, the program
is tightly coupled to the current CPU, and moving the program to another CPU
requires a complete rewrite. Each Assembly Language instruction does only a
fraction of the amount of work, so to do anything takes a lot of Assembly Language
statements. Therefore, to do the same work as, say, a Python program takes an order
of magnitude larger amount of source code written by the programmer.

Writing in Assembly Language is harder, as problems with memory addressing
and CPU registers must be solved, which are all handled transparently by high-level
languages. So why would a programmer ever want to learn Assembly Language
programming? Here are ten reasons people learn and use Assembly Language:
1.

To	write	more	ef�icient	code: Knowing how the computer works internally
leads to writing more streamlined code, even if never writing Assembly
Language code. For example, make data structures easier to access and write
code in a style that allows the compiler to generate more effective code. Also,
make better use of computer resources, like coprocessors, and use the given
computer to its fullest potential.

2.
To	utilize	specialty	coprocessors: The PIO coprocessors on the
RP2040/P2350 are only programmable in Assembly Language. There is a
library of common applications in the Software Developer’s Kit (SDK), but if
something beyond these is needed, Assembly Language is the only option.

3.
To	more	effectively	debug	programs: When debugging any program on the
Pico-series using gdb, a lot of the views are at the Assembly Language level. The
Assembly Language code generated by the compiler can be seen, along with the
CPU registers and raw memory. Understanding this extra level of detail can help
solve more dif�icult program bugs. Further, much of the SDK is written in
Assembly Language, and understanding it helps when stepping through the
code.

4.
To	make	RP2040/RP2350	programs	faster: If the C compiler or MicroPython
runtime isn’t producing a program that is responsive enough, then add some
Assembly Language code to solve a bottleneck.

5.
To	improve	hardware	interfaces: When interfacing the Pico-series to a
hardware device through the GPIO ports, the speed of data transfer is extremely
sensitive as is how fast the program can process the data. Perhaps, there are a
lot of bit-level manipulations that are more ef�icient to program in Assembly
Language.

6.
To	improve	Machine	Learning: The Pico-series is fast enough to perform
Machine Learning. This relies on fast matrix mathematics. If this can be made
faster with Assembly Language and/or using the coprocessors, then an AI-
based robot or sensor network can be made that much better.

7.
To	optimize	speci�ic	functions: Most large programs have components
written in different languages. If the program is 99% C++ and Python, the other
1% could be Assembly Language, perhaps giving the program a performance
boost or some other competitive advantage.

8. To	add	hardware	support	to	the	SDK: If working for a hardware company
h k RP2040/RP2350 b d b d i h R b Pi

that makes an RP2040/RP2350-based board competitor to the Raspberry Pi
Pico-series, these boards have some Assembly Language code in the SDK that
must be customized for their specialized functionality or con�iguration.

9.

To	look	for	security	vulnerabilities: When searching for security
vulnerabilities, the Assembly Language code needs to be examined; otherwise,
there isn’t a way to know what is really going on and hence where holes might
exist. This is especially important when connecting to IoT networks.

10.
To	conserve	precious	resources: When programming microcontrollers, there
are limited memory and resources. Often every bit needs to be used ef�iciently
to get an application to do what is needed. Often Assembly Language is the only
option to cram in every bit of functionality possible.

Computers	and	Numbers
Numbers for humans are typically represented using base 10. The common theory is
that this is done because humans have ten �ingers to count with. This means a
number like 387 is a representation for

387 = 3 * 102 + 8 * 101 + 7 * 100

 = 3 * 100 + 8 * 10 + 7
 = 300 + 80 + 7

There is nothing special about using 10 as the base, and a fun exercise in math
class is to do arithmetic using other bases. In fact, the Mayan culture used base 20,
perhaps because humans have 20 digits—10 �ingers and 10 toes.

Computers don’t have �ingers or toes; rather, everything is a switch that is either
on or off. As a result, it is natural for computers to use base 2 arithmetic. Thus, to a
computer a number like 1011 is represented by

1011 = 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20

 = 1 * 8 + 0 * 4 + 1 * 2 + 1
 = 8 + 0 + 2 + 1
 = 11 (decimal)

This is great for computers, but four digits are used for the decimal number 11
rather than two digits. The big disadvantage for humans is that writing out binary
numbers is tiring, because they take up so many digits.

Computers are incredibly structured, so all their numbers are the same size.
When designing computers, it doesn’t make sense to have all sorts of differently sized
numbers, so a few common sizes have taken hold and become standard.

First is the byte, that is, 8 binary bits or digits. In the example above with 4 bits,
there are 16 possible combinations of 0s and 1s. This means 4 bits can represent the

numbers 0–15. This means each number can be represented by one base 16 digit.
Base 16 digits are represented by the numbers 0–9 and then the letters A–F for 10–
15. Base 16 numbers are referred to as hexadecimal (Figure 2-1).

Figure	2-1 Representing hexadecimal digits

A byte (8 bits) can be represented as two base 16 digits. This makes writing out
numbers far more compact and easier to deal with.

Since a byte holds 8 bits, it can represent 28 (256) numbers. Thus, the byte e6
represents

e6 = e * 161 + 6 * 160

 = 14 * 16 + 6
 = 230 (decimal)
 = 1110 0110 (binary)

An ARM Cortex-M processor handles 32-bit numbers, a 32-bit quantity is called a
word, and it is represented by 4 bytes. So a string like B6 A4 44 04 is seen as a
representation of 32 bits of memory or one word of memory or perhaps the contents
of one register.

If this is confusing or scary, don’t worry. The tools will do all the conversions. It’s
just a matter of understanding what is presented on screen. Also, if an exact binary
number needs to be speci�ied, usually that is done in hexadecimal, though all the
tools accept all the formats.

The calculator (galculator) that is bundled with the Raspberry Pi OS, in scienti�ic
view, converts between decimal, hex, octal, and binary, as well as performs several
computer-related logical operations. Figure 2-2 is a screenshot of this calculator
displaying the hex number E6.

Figure	2-2 The Raspberry Pi OS’s galculator

There is a bit more complexity in how signed integers are represented and how
arithmetic works. This is explained later when arithmetic is covered.

ARM	Assembly	Instructions
In this section, the basic architectural elements of the ARM Cortex-M0+ processor are
introduced, and the form of its machine code instructions is looked at. The ARM
processor is a Reduced Instruction Set Computer (RISC), which theoretically will
make learning Assembly Language easier. There are fewer instructions, and each
instruction is simpler, so the processor can execute each instruction much quicker.
The challenge is that it can take quite a few instructions to accomplish easy tasks.
The goal is to develop design patterns to help building more sophisticated structured
programming elements.

When programming an ARM A-series CPU, in 32-bit mode, as with the Raspberry
Pi 5, then there is a subset of the instruction set called the “thumb” instructions.
Newer A-series CPUs typically have 32-bit instructions, but if memory needs to be
conserved, then there is a “thumb” mode. When switching to “thumb” mode, most of
the instructions are 16 bits in size, thus using half the memory.

The M-series CPUs are designed for embedded processors running with minimal
memory. This led the designers of the M-series to make the full instruction set to be
most of the A-series thumb instructions. This book won’t continue to refer to them as
thumb instructions, since these are the full instruction set of the Cortex-M-series
CPUs used in the RP2040 and RP2350. Running a simpler instruction set is a key
design decision to keep the transistor count down; therefore, the cost and power
consumption of M-series processors are down.

In technical computer topics, there are often chicken-and-egg problems in
presenting the material. The purpose of this section is to introduce all the terms and

ideas used later. This introduces all the terms so they are familiar when we cover
them in full detail.

CPU	Registers
In all computers, data is not manipulated in the computer’s memory; instead, it is
loaded into CPU registers, and then the data processing or arithmetic operation is
performed in these registers. The registers are part of the CPU circuitry allowing
instant access, whereas memory is a separate component and there is a transfer time
for the CPU to access it.

To add two numbers:
1.

Load one into one register and the other into another register.
2.

Perform the add operation putting the result into a third register.
3.

Copy the answer from the results register back to memory.
This is typical of a RISC processor where it takes several instructions to perform

simple operations.
A program on the ARM M-series processor has access to 16 32-bit integer

registers and a status register:
R0–R7: These eight are general-purpose that can be used for anything.
R8–R11: These registers can be used to store values, but there are few instructions
that can access these directly.
R12: The intra-procedure call scratch register (IP).
R13: The stack pointer (SP).
R14: The link register used in the context of calling functions, which will be
explained in more detail when subroutines are covered.
R15: The program counter (PC). The memory address of the currently executing
instruction.
Current	Program	Status	Register (CPSR): This special register contains bits of
information on the last instruction executed. More on the CPSR when branch
instructions (if statements) are covered.

ARM	Instruction	Format
Most ARM Cortex-M-series binary instructions are 16 bits long. There are a small
number of 32-bit-long instructions that will be talked about when encountered.
Fitting all the information for an instruction into 16 bits is quite an accomplishment
requiring using every bit to tell the processor what to do. There are several
instruction formats, and these will be explained when they are encountered. To give
an idea for some data processing instructions, consider the format for an ADD
instruction. Figure 2-3 is the format of the instruction and what the bits specify.

Figure	2-3 The binary format of the ADD instruction

Examining each of these �ields:
Opcode: Which instruction is being performed, like ADD or SUB
Rm	and	Rn: The two registers to add
Rd: The destination register—where to put the result of the addition

For example, consider the following Assembly Language instruction:

ADD R5, R3, R2

This is the human-readable form of the instruction to the computer: R5 = R3 +
R2. The Assembler tool converts this into a machine-readable form, namely, the 16
bits: 0x189d. In binary this is 0001 1000 1001 1101, so pulling apart the bits reveals
the following:

Opcode = 0001100, meaning ADD
Rm = 010 = 2 (i.e., R2)
Rn = 011 = 3 (i.e., R3)
Rd = 101 = 5 (i.e., R5)

Note Each register is speci�ied by 3 bits allowing the use of registers R0–R7. If it
makes sense to operate on one of the other registers like SP, then there will be a
speci�ic opcode for that, and a register won’t be speci�ied.

If familiar with A-series Assembly Language, this instruction is actually ADDS,
since it “sets” the CPSR when it executes. M-series Assembly Language doesn’t
have the option to control whether the CPSR is set, so it tends to be left off;
however, the Assembler will take either.

In A-series Assembly Language, this instruction can be seen as ADD.N,
meaning narrow, indicating the 16-bit encoding instead of ADD.W, which gives the
32-bit encoding. Again, the M-series only supports .N, so it isn’t necessary to
specify this.

When things are running well, each instruction executes in one clock cycle. An
instruction in isolation takes three clock cycles, namely, one to load the instruction
from memory, one to decode the instruction, and then one to execute the instruction.
The ARM CPU is smart and works on three instructions at a time, each at a different
step in the process, called the instruction pipeline. If there is a linear block of
instructions, they all execute on average taking one clock cycle.

RP2040/RP2350	Memory
The RP2040 has 264 kilobytes (kb) of memory, and the RP2350 has 520kb of
memory. Programs are loaded from the Pico-series’ �lash storage into memory and
executed. The memory holds the program, along with any data or variables
associated with it.

The CPU registers are 32 bits in size. These are used both to address memory and
to perform integer arithmetic. This means that memory addresses are 32-bit
quantities. This is why we call an ARM M-series CPU a 32-bit processor.
Instructions are mostly 16 bits in size. This doesn’t affect the bitness of the
processor; it is simply a technique to minimize memory usage and keep CPU
processing simple.

To load a register from a known 32-bit memory address, for example, a variable
to perform arithmetic on, is a common operation. How is this done? The instruction
is only 16 bits in size, and nearly all the bits are already used to specify the opcode
and register to use.

This is a problem that will be returned to several times, since there are multiple
ways to address it. In a CISC computer, this isn’t a problem since instructions are
typically quite large and variable in length.

Memory can be loaded by using a register to specify the address to load. This is
called indirect memory access. But all this does is move the problem, since there still
isn’t a way to put the value into that register (in a single instruction).

The quick way to load memory that isn’t too far away from the program counter
(PC) register is to use the load instruction via the PC, since it allows an 8-bit offset
from the register. This allows ef�icient access memory within 256 words of the PC.
Yuck, how would a programmer write such code? This is where the GNU Assembler
comes in. It allows the location to be speci�ied symbolically and will �igure out the
offset automatically.

In Chapter 6, the details of accessing memory will be studied in detail. In all RISC
processors this is a challenge since the size of memory addresses is typically larger
than the size of the Assembly Language instructions.

About	the	GCC	Assembler
Writing Assembly Language code in binary as 16-bit instructions would be painfully
tedious. Enter GNU’s Assembler, which provides the power to specify everything that
the ARM can do but takes care of getting all the bits in the right place. The general
way to specify assembly instructions is

label: opcode operands

The label: is optional and only required if the instruction is the target of a branch
instruction.

There are quite a few opcodes; each one is a short mnemonic that is human
readable and easy for the Assembler to process. They include
ADD for addition
LDR for load a register
B for branch

There are quite a few different formats for the operands, and these will be
covered as the instructions that use them are encountered.

Hello	World
In almost every programming book, the �irst program is a simple program to output
the string “Hello World”. This will now be done with Assembly Language to
demonstrate some of the concepts discussed. This sample will be built both with
Visual Studio Code and the raw Pico-series C/C++ SDK framework, to demonstrate
the two common ways of building projects. Up �irst is Visual Studio Code.

With	Visual	Studio	Code
Start up Visual Studio Code and, from the Raspberry Pi Pico extension, choose to
create a new C/C++ project. Figure 2-4 shows the New Pico Project screen with the
necessary �ields �illed in when using the Raspberry Pi Debug Probe:

Figure	2-4 The Visual Studio Code Raspberry Pi Pico extension New Pico Project dialog

Name: HelloWorld
Stdio	support: Console over UART
Debugger: DebugProbe (CMSIS-DAP)

Now take the code from Listing 2-1 and copy it to a �ile called HelloWorld.S
placed in the folder speci�ied for the HelloWorld project.

Note It is important to use .S and not .s in the �ilename, because .S will support
some C-type include �iles, whereas .s is for pure Assembly Language only. As more
of the SDK is used, more C-type �iles will need to be included.

@
@ Assembler program print out "Hello World"
@ using the Pico SDK.
@

@ R0 - first parameter to printf
@ R1 - second parameter to printer
@ R7 - index counter
@

.thumb_func @ Necessary because sdk uses
BLX
.global main @ Provide program starting
address to linker

main:
 MOV R7, #0 @ initialize counter to 0
 BL stdio_init_all @ initialize uart or usb
loop:
 LDR R0, =helloworld @ load address of string
 ADD R7, #1 @ Increment counter
 MOV R1, R7 @ Move the counter to second
parameter
 BL printf @ Call pico_printf
 B loop @ loop forever

.data
 .align 4 @ necessary alignment
helloworld: .asciz "Hello World %d\n"

Listing	2-1 The Hello World program

Now delete the HelloWorld.c �ile that was created in that same folder. This work
will automatically be represented in the �ile list for the project. However, the
CMakeLists.txt �ile needs to be edited to change

add_executable(HelloWorld HelloWorld.c)

to

add_executable(HelloWorld HelloWorld.S)

The complete CMakeLists.txt �ile is shown in Listing 2-2.

cmake_minimum_required(VERSION 3.13)

set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

Initialise pico_sdk from installed location

(note this can come from environment, CMake cache etc)

== DO NOT EDIT THE FOLLOWING LINES for the Raspberry Pi
Pico VS Code Extension to work ==
if(WIN32)
 set(USERHOME $ENV{USERPROFILE})
else()
 set(USERHOME $ENV{HOME})
endif()
set(sdkVersion 2.2.0)
set(toolchainVersion 14_2_Rel1)
set(picotoolVersion 2.2.0)
set(picoVscode ${USERHOME}/.pico-sdk/cmake/pico-vscode.cmake)
if (EXISTS ${picoVscode})
 include(${picoVscode})
endif()
#
===
set(PICO_BOARD pico2 CACHE STRING "Board type")

Pull in Raspberry Pi Pico SDK (must be before project)
include(pico_sdk_import.cmake)

project(HelloWorld C CXX ASM)

Initialise the Raspberry Pi Pico SDK
pico_sdk_init()

Add executable. Default name is the project name, version
0.1

add_executable(HelloWorld HelloWorld.S)

pico_set_program_name(HelloWorld "HelloWorld")
pico_set_program_version(HelloWorld "0.1")

Modify the below lines to enable/disable output over
UART/USB
pico_enable_stdio_uart(HelloWorld 1)
pico_enable_stdio_usb(HelloWorld 0)

Add the standard library to the build
target_link_libraries(HelloWorld
 pico_stdlib)

Add the standard include files to the build
target_include_directories(HelloWorld PRIVATE
 ${CMAKE_CURRENT_LIST_DIR}
)

pico_add_extra_outputs(HelloWorld)

Listing	2-2 CMakeLists project de�inition �ile

With this work done, click the Compile button on the bottom status bar to
compile the project. For best results disconnect the USB cable from the Pico-series
and reconnect it while pressing the BootSel button. Then start the Serial Monitor in
VS Code. Now click Run and the Hello World strings should be seen in the monitor
pane as shown in Figure 2-5.

Figure	2-5 VS Code running the HelloWorld program showing the results in the Serial Monitor pane

With	the	Pico-series	C/C++	SDK
First, create a “pico” folder in $HOME and then create a “HelloWorld” folder in the
$HOME/pico folder. Now copy the Assembly Language source �ile HelloWorld.S from
Listing 2-1 to this folder. Next, copy CMakeLists.txt from Listing 2-2. All the �iles
mentioned here will be placed in this folder.

The CMakeLists.txt �ile lists the source �iles, the libraries needed, and some
con�iguration details for the SDK. This �ile will compile the HelloWorld.S, link it to
the pico_stdlib library, and con�igure the SDK whether to direct the output to either
the UART or USB port. There is information on the compiler versions to use, which

mostly match the SDK requirements since the included parts of the SDK need to be
built to be included in the program.

Set one of pico_enable_stdio_uart and pico_enable_stdio_usb to 1 and the other
to 0 to control where the output of the “Hello World” text will go.

Copy pico_sdk_import.cmake from the SDK folder pico-sdk/external into the
project folder. Finally, create a build folder using “mkdir build” or using the �ile
explorer. The project folder should now look like the following:

drwxr-xr-x 5 smist08 smist08 4096 Aug 12 15:25 build
-rw-r--r-- 1 smist08 smist08 1564 Aug 12 13:49
CMakeLists.txt
-rw-r--r-- 1 smist08 smist08 664 Nov 5 2021 HelloWorld.S
-rw-r--r-- 1 smist08 smist08 6022 Aug 5 11:36
pico_sdk_import.cmake

The project is now ready to build. Open a terminal window and cd into the project
folder’s build folder. Type

cmake ..

Note It might be necessary to install cmake with “sudo apt install cmake.”

This command will add the SDK �iles that are needed for this project and create a
make�ile. Now type

make

This command compiles the project. If all goes well, the build folder should now
contain the following:

-rw-r--r-- 1 smist08 smist08 28562 Aug 12 15:24
CMakeCache.txt
drwxr-xr-x 6 smist08 smist08 4096 Aug 12 15:25 CMakeFiles
-rw-r--r-- 1 smist08 smist08 1837 Aug 12 15:24
cmake_install.cmake
-rw-r--r-- 1 smist08 smist08 362565 Aug 12 15:24
compile_commands.json
drwxr-xr-x 3 smist08 smist08 4096 Aug 12 15:24 generated
-rwxr-xr-x 1 smist08 smist08 15292 Aug 12 15:25
HelloWorld.bin
-rw-r--r-- 1 smist08 smist08 237755 Aug 12 15:25
HelloWorld.dis
-rwxr-xr-x 1 smist08 smist08 393212 Aug 12 15:25
HelloWorld.elf

-rw-r--r-- 1 smist08 smist08 385508 Aug 12 15:25
HelloWorld.elf.map
-rw-r--r-- 1 smist08 smist08 43081 Aug 12 15:25
HelloWorld.hex
-rw-r--r-- 1 smist08 smist08 31232 Aug 12 15:25
HelloWorld.uf2
-rw-r--r-- 1 smist08 smist08 108722 Aug 12 15:24 Makefile
-rw-r--r-- 1 smist08 smist08 60 Aug 12 15:24
pico_flash_region.ld
drwxr-xr-x 6 smist08 smist08 4096 Aug 12 15:24 pico-sdk

HelloWorld.uf2 is the compiled program. It can be run by powering off the Pico-
series and then powering it on while holding down the BootSel button. In this mode
it will present its �lash storage as a shared drive, and HelloWorld.uf2 can be copied
onto that drive. As soon as this is done, the Pico will reboot and run the program.

The output can be viewed using minicom, if the batch �iles recommended in
Chapter 1 were created. Then run m-usb assuming that the Debug Probe is being
used. When this is done, something like the screenshot in Figure 2-6 should be
observed.

Figure	2-6 The output from the minicom program for Hello World

Now that the program is running, the contents of HelloWorld.S are examined.

Our	First	Assembly	Language	File
This �ile is organized into four sections: the header comments, the function
de�inition, the Assembly Language code, and the program data. Each of these sections
will be examined in detail.

About	the	Starting	Comment
The program starts with a comment that states what it does. It documents the
registers used since keeping track of which registers are doing what becomes
important as our programs get bigger.

An “@” character is the comment character, and everything after the “@” is a
comment. That means it is there for documentation and is discarded by the GNU
Assembler when it processes the �ile.
Assembly Language is cryptic, so it’s important to document what is going on.
Otherwise, returning to the program after a couple of weeks will result in having
no idea what the program does.
Each section of the program has a comment stating what it does, and then each line
of the program has a comment at the end stating what it does. Everything between
a /* and */ is also a comment and will be ignored.

Where	to	Start
Next, the starting point of the program is speci�ied.

This is de�ined as a global symbol called main that the Pico-series runtime will call
to execute the program. All programs will contain this somewhere.
This must be de�ined as a thumb_func, due to the way the SDK calls the function.
What this means is explained in Chapter 7. Cortex M-series CPUs don’t support any
other type of function, but this is still required. If omitted, a hardware fault will
result when the program is run.
The program can consist of multiple .S �iles, but only one can contain main.

Assembly	Instructions
Five different Assembly Language instructions are used in this example:
1.

MOV, which moves data into a register. First, an immediate operand is used,
which starts with the “#” sign. So “MOV R7, #0” means move the number 0 into
R7. In this case the 0 is part of the instruction and not stored elsewhere in
memory. Secondly, “MOV R1, R7” moves the contents of register R7 into R1. In
the source �ile, the operands can be upper- or lowercase.

2.
BL, which calls a function. Two functions are called: stdio_init_all to initialize
communications back to the Raspberry Pi 5 and printf that sends the text. printf
has two parameters in this case: the �irst is placed in R0, which is the address of
the string to print, and the second in R1, which is the integer counter.

LDR, which is used to both load memory addresses and load the contents for

3.
, w c s used to bot oad e o y add esses a d oad t e co te ts o

memory. In this case “LDR R0, =helloworld” loads register R0 with the address of

the string to print.

4.
ADD, which adds two 32-bit integers. “ADD R7, #1” adds the immediate operand
#1 (the number 1) to register R7 incrementing it.

5.

B, which branches to the label loop. Labels are symbolic indicators of positions in
the code or data.

Next up is the last section, the data section.

Data
Next is the .data statement, which indicates the following instructions are located in
the data section of the program.

First, there is an “.align 4” statement. This ensures the memory address is divisible
by four. Some instructions require the data to be aligned, and even if the
instruction doesn’t require data alignment, data loads faster when it is aligned (the
memory circuitry usually will require two reads for a non-aligned 32-bit quantity).
Next is the label “helloworld” followed by an .asciz statement and then the string
to print.
The .asciz statement tells the Assembler to put the string in the data section, and
then it can be accessed via the label as done in the LDR statement. The z in asciz
asks the Assembler to place a 0 byte after the last character, which is required by
the printf function. How text is represented as numbers will be discussed later; the
encoding scheme here is called ASCII.
The last “\n” character is how a new line character is represented.

These are the individual instructions. Now how they work together is discussed.

Program	Logic
On full computers running operating systems like Linux, Windows, or MacOS,
programs usually run, do their job, and then terminate returning control to the
operating system. In this way, many programs are run all under the control of the
operating system, and the operating system is the only program that runs from
power-on to power-off. On microcontrollers, typically, there is no operating system.
The only thing that runs is the application program. The expectation is that the
program will be run shortly after the Pico-series powers on and then terminated
when it is powered off. This is why an in�inite loop was created that runs forever,
which is typical of most microcontroller programs.

If the program terminated after printing “Hello World”, the CPU would halt until
the microcontroller is powered off and on again. Chances are the printing of “Hello
World” would be missed because it would happen before minicom is started. A
counter was added as a simple example and so that when minicom is run it is clear

that something is actually happening, namely, the count forever increasing till it
wraps around and starts over.

The call stdio_init_all at the beginning initializes either the UART or USB channel
depending on what was con�igured in the CMakeLists.txt �ile. For the Raspberry Pi
Debug Probe, this should be UART.

The call to printf is an alias to pico_printf, which is an implementation of the C
runtime’s printf but contained in the Pico-series SDK for anyone to use. Assembly
Language programmers can call anything there as long as they know the protocol to
do so.

Why keep the count in register R7 rather than using R1 and saving having to
move R7 into R1 before each call to printf? The reason is that there is a register
usage protocol when calling functions and R1 is allowed to be used by printf,
without printf saving whatever is put there. If printf uses R7, then it must save the
value and restore it before returning. The register usage protocol will be studied in
Chapter 7.

The printf function takes a variable number of arguments; the �irst argument is
always a string. If the string contains certain characters like %d, this means print a
number, which then causes printf to look for a second parameter containing a 32-bit
integer. This is handy, since it converts the binary 32-bit quantity into a human-
readable number. Hopefully, if familiar with C programming, then this is all basic and
familiar.

Reverse	Engineering	the	Program
How each Assembly Language instruction is compiled into a 16-bit number was
touched on quickly. The Assembler created the binary version of HelloWorld, and it
provides a �ile to show what it did. Speci�ically, look at the HelloWorld.dis �ile that
was generated in the build folder. This �ile contains everything that is combined to
create the program. This includes the code to initialize the RP2040 or RP2350 from
the SDK, the code for the printf function, as well as the code to communicate with
either the UART or USB ports. Listing 2-3 contains only the code and data sections
from Listing 2-1.

10000234 <main>:
10000234: 2700 movs r7, #0
10000236: f002 fe8d bl 10002f54
<stdio_init_all>

1000023a <loop>:
1000023a: 4803 ldr r0, [pc, #12] @
(10000248 <loop+0xe>)
1000023c: 3701 adds r7, #1
1000023e: 1c39 adds r1, r7, #0

10000240: f002 ff50 bl 100030e4
<__wrap_printf>
10000244: e7f9 b.n 1000023a <loop>
10000246: 0000 .short 0x0000
10000248: 200005b0 .word 0x200005b0
...
200005b0 <helloworld>:
200005b0: 6c6c6548 .word 0x6c6c6548
200005b4: 6f57206f .word 0x6f57206f
200005b8: 20646c72 .word 0x20646c72
200005bc: 000a6425 .word 0x000a6425

Listing	2-3 Disassembly of Hello World

In Listing 2-3, the �irst column is the memory address where the item will be
located. The second column is the binary form of the instruction created by the
Assembler from the human-readable forms of the instruction and its operands that
are in the next two columns. The disassembler sometimes adds helpful comments in
angle brackets <> or after an “@” comment character.

Some points to notice from this listing:
Most of the instructions compile to 16-bit quantities except for the BL statements,
which are 32 bits. Practically speaking if the M-series CPU insisted on making BL
statements 16 bits, then the jumps would be too small to be useful, and the only
alternative would be to build the address in a register and then jump to it
indirectly, which would take several statements. This way functions can be called
ef�iciently with only one Assembly Language statement.
MOV and ADD have been changed to MOVS and ADDS; this is to indicate that these
set the CPSR. The GNU toolchain is used for both ARM M-series and A-series
processors, and features from the A-series processor are present, even though
these can’t be changed on the M-series CPUs.
The branch statement B has been changed to B.N. This is to indicate this is the 16-
bit version of this instruction. There is a 32-bit version of this instruction B.W, and
the Assembler will use B.W if the target of the branch is too far away to �it in 16
bits. The Assembler will use the most ef�icient version possible.
Notice the second MOV statement was changed to “adds r1, r7, #0”. This adds R7
to 0 and puts the result in R1, which is what is wanted. With only 16 bits, bits can’t
be wasted with duplicate functions, so if there are ever two ways to do something,
one is aliased to the other. Again, the Assembler does these substitutions, so the
programmer doesn’t need to remember all these tricks that go on under the hood.

Look at the LDR instruction. It changed from

ldr R0, =helloworld

to

ldr r0, [pc, #12] ; (10000370 <loop+0xe>)

This is the Assembler helping with the ARM processor’s mechanism of addressing
memory with one instruction. It allows a symbolic address to be speci�ied, namely,
“helloworld,” and translate that into an offset from the program counter.

Note [pc, #12] points to a bit of memory that holds 20000180, which is the
actual address of the “Hello World” string. The Assembler inserted this, and it will
be covered in detail in Chapter 6.

The Assembly Language program has 18 bytes of code and 22 bytes of data, which is
pretty small. This is the power of the small 16-bit assembly instructions used in the
ARM Cortex M-series processors. Notice that the uf2 �ile is 45k long, and the size of
the code it contains is about 22k. This is because in addition to this code, it contains
the SDK runtime code to initialize the RP2040/RP2350, set up the environment, and
then run the program. It also contains the SDK code for printf and any other SDK
routines that are used. This is the total code running in the 264kb/520kb of memory
available to the RP2040/RP2350. There is nothing else—no operating system.
Everything running is compiled from source code into the UF2 �ile, and that is all that
is running on the Pico-series after it powers up. A bit of code in the Pico-series
�irmware loads the code into memory and then passes execution to it, and away it
goes.

Summary
This chapter introduced the ARM Cortex M-series processor and Assembly Language
programming along with why to use Assembly Language. Some of the tools that will
be used throughout the book were covered. How computers represent positive
integers was explained. How the ARM CPU represents Assembly Language
instructions was studied along with the registers it contains for processing data. The
RP2040/RP2350’s memory was introduced. The GNU Assembler was introduced,
which will assist in writing Assembly Language programs. A simple complete
program to print “Hello World” was written, and its output was viewed in VS Code or
minicom on the Raspberry Pi. In Chapter 3, more details on the tools used to build
and debug programs will be studied.

Exercises
1.

Convert the decimal number 1234 to both binary and hexadecimal.
2.

Download the source code for this book from GitHub and compile the HelloWorld
program on a Raspberry Pi. Next, run it on a Pico-series board and observe the
output in minicom or VS Code.

3.
Compare the size of the uf2 �ile when setting the various output options between
none, UART, and USB. Remember to delete the build folder whenever changing
the CMakeLists.txt �ile. Which one is the better option as the program size
approaches 264kb?

4.
Decode a couple of the binary format of the instructions in Listing 2-3 to �igure
out the operand and where the registers are speci�ied.

5.

Change the string that is printed. Try printing the number in hexadecimal.
6.

Rather than count up, change the program to count down subtracting 1 rather
than adding 1 in the loop.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_3

3.	How	to	Build	and	Debug	Programs
Stephen Smith1

Gibsons, BC, Canada

CMake
GNU Make
Print Statements
GDB
Using the VS Code Extension
Preparing to Debug
Beginning GDB
Summary
Exercises

In this chapter, the build tools employed for program development are
explored in greater detail. The Pico-series C/C++ SDK and the Visual
Studio Code extension streamline much of the process of building
programs, yet gaining insight into the operations beneath these high-
level tools can be highly bene�icial. Following this, attention turns to the
GNU debugger (gdb), which enables single stepping through programs
and examining registers and memory during execution.

CMake
CMake is an open source, build automation tool that is cross-platform
and compiler independent. The goal of using CMake in the Pico-series
SDK is to hide the messy details of using the various compiler
toolchains on the host computer, whether it’s a Raspberry Pi, Windows,

https://doi.org/10.1007/979-8-8688-2202-5_3

or MacOS. Clicking the Compile button in VS Code results in CMake
being run. With CMake the project is built from the CMakeLists.txt �ile,
and the details of how to run the GNU Assembler are automated. To
fully cover CMake requires a full book in itself, so only what is needed
for Assembly Language programming is covered.

CMake knows about the main C compilers and Assemblers,
including building C and Assembly Language �iles using the GNU
toolchain. The SDK adds CMake �iles to give speci�ic options, like
compiling for the correct ARM Cortex M-series processor, and lets
CMake know where all the SDK �iles are located. The goal is to specify
the target executable name and list the �iles that need to be built; then
CMake, with the help of some de�inition �iles in the SDK, does all the
work. CMake doesn’t actually build the project; instead, it creates a
make�ile for the GNU Make tool, which is covered in the next section.
GNU Make is then run to do the compiling.

Make doesn’t know anything about compiler tools; instead, it has a
list of rules that specify commands to run that CMake created. Now a
selection of the contents from the CMakeLists.txt �ile from Listing 2-2
is examined.

cmake_minimum_required(VERSION 3.13)

The above line speci�ies the minimum version of CMake required to
build the project. This is the recommended value from the SDK and
indicates the minimum version to build the SDK �iles.

set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
set(sdkVersion 2.2.0)
set(toolchainVersion 14_2_Rel1)
set(picotoolVersion 2.2.0)

These above statements de�ine the version of the language used
(not the version of the compiler). For instance, we are using C11 (or
more formally ISO/IEC 9899:2011). These are the minimum versions of
the languages required for the SDK to work. Then the version of the
Pico-series SDK, the version of the GNU toolchain, and the version of
the picotool are speci�ied; the picotool is responsible with interacting

with the Pico-series board after bootsel is pressed to perform tasks
like downloading new programs to the board.

set(PICO_BOARD pico2 CACHE STRING "Board type")

Setting the PICO_BOARD variable is crucial. This value ends up in
the resulting executable, and it won’t run unless this value matches the
value expected by the board. The default is the Pico 1 with the RP2040
chip, so this is crucial for any Pico 2 RP2350-type board.

include(pico_sdk_import.cmake)

The include statement includes the code from the speci�ied �ile into
the �ile and executes it. This �ile was copied into the same place as the
CMakeLists.txt �ile. pico_sdk_import.cmake checks that the
environment variable PICO_SDK_PATH is set and then includes
${PICO_SDK_PATH}/pico_sdk_init.cmake. This �ile then includes several
further �iles that set up all the rules for building the SDK �iles and
applies all the con�igurable options documented in the SDK’s reference
manual.

project(HelloWorld C CXX ASM)

The above line de�ines the project name as HelloWorld and that C,
C++, and Assembly Language will be used. Even though the project
didn’t include any C or C++ �iles, many such �iles were included from
the SDK.

pico_sdk_init()

The above call executes a macro to set up the SDK.

add_executable(HelloWorld
 HelloWorld.S
 cfile.c
 cplusplusfile.cpp
)

The above statement is where to add source �iles. A couple of extra
�iles were added for demonstration purposes.

Note They can be of different types, for example, a C and a C++ �ile.
Based on the �ile extension, CMake creates the correct build rules
into the generated make�ile. Usually, as the project grows, all that is
needed is to add �iles here and CMake will take care of the rest.

pico_set_program_name(HelloWorld "HelloWorld")
pico_set_program_version(HelloWorld "0.1")

These two lines set the program name and version, which are
embedded in the resulting executable �ile.

pico_enable_stdio_uart(HelloWorld 1)
pico_enable_stdio_usb(HelloWorld 0)

The above macros are de�ined in the Pico’s SDK. We set them to
control where the output from printf statements go. Set the second
parameter to 1 to enable the device and 0 to disable it.

Note Change the options here and rebuild, rather than modifying
the source code. The correct code to support either the UART or USB
port is included when our project is built.

target_link_libraries(HelloWorld pico_stdlib)

The above statement speci�ies the libraries to use. The library
needed so far is pico_stdlib, but other libraries can be added as needed.

target_include_directories(HelloWorld PRIVATE
 ${CMAKE_CURRENT_LIST_DIR}
)

The above call sets up where to look for include directories. If
unchanged this call includes all the various source �iles in the SDK. If

the project has the source code spread over multiple folders, then these
can be added separating them by spaces.

pico_add_extra_outputs(HelloWorld)

If the above line is left out, the build works and an .elf �ile is
produced, which is an executable �ile for Linux; however, this isn’t
always what is wanted. The pico_add_extra_outputs statement causes
CMake to generate build rules to create a .uf2 �ile from the .elf �ile,
which is the correct �ile to copy to the Pico-series’ �lash storage. It also
generates useful �iles like the .dis �ile (disassembly �ile).

GNU	Make
GNU Make is a tool used to build programs, by taking a number of rules
for how to compile programs and executing them. The rules are in the
form of dependencies, and Make compares the dates of the �iles, so if
the dependent �ile is newer than what it depends upon, then it knows to
not do that step. Working with Make is more ef�icient than working
with shell scripts, since it only builds what changed, therefore building
programs more quickly. CMake writes all the dependency scripts, so
the details of make�iles won’t be covered here. However, Make needs to
be run when using the Pico-series SDK after CMake is �inished.

To build everything, ignoring the �ile data/times, use

make -B

Print	Statements
Many debugging-type functions can be performed by peppering the
source code with calls to the SDK’s printf function. The SDK’s printf is
quite lightweight compared with the full C runtime printf function,
because it doesn’t use memory allocation and is re-entrant; even so, it
contains most of the functionality that C programmers typically use. In
the “Hello World” program, adding printf was easy and non-disruptive
since only one register was used. However, there are a few complexities
to be aware of:

Functions are allowed to use registers R0–R3 without saving them. If
any of these four registers were used, then save them before calling
printf and restore them afterward. Furthermore, printf disrupts the
CPSR, meaning it can’t be inserted in the middle of code relying on
the CPSR.
Each time seeing something new is required, adding a printf call is
needed, adding code to set registers and call the function. Then
everything needs to be recompiled, the .uf2 �ile copied to the Pico-
series board, and the output observed.
There is only 264kb/520kb of memory on the RP2040/RP2350, and
creating a lot of strings to print things can use a substantial amount
of this precious resource.
Even though the SDK is lightweight, it still takes memory and adds
processing time to the program, perhaps disrupting time-sensitive
tasks.
Adding and removing source code for the printf statements could
result in bugs, for example, if a mistake is made and one extra
instruction is deleted.
There may be surprising side effects from executing printf that
disrupt the program.

Some of these problems can be alleviated by using the GNU
Assembler’s macro feature. How to do this will be looked at in Chapter
7.	In addition, printf is a useful function, but to address these
limitations, what is really needed is a full debugger and this is the GNU
debugger (gdb).

GDB
When programming with Assembly Language, being pro�icient with the
debugger is critical to success. Not only will this help with the Assembly
Language programming, but also it is a great tool to use with high-level
language programming. gdb addresses many of the concerns with
printf mentioned above; however, it introduces a few of its own and is a
technical tool that requires a learning curve to become pro�icient with
it.

gdb was installed either by the VS Code extension or the
pico_setup.sh script. This section assumes using the Raspberry Pi

Debug Probe.

Using	the	VS	Code	Extension
All debugging can be done inside Visual Studio Code. This provides a
nice visual environment for debugging.

Note Make sure to rename the .gdbinit �ile given in Chapter 1; this
is for debugging outside of VS Code, and its presence will cause gdb
to not start inside VS Code.

To start the debugging from VS Code, simply select “Start Debugging …”
from the Run menu. This launches gdb and creates a breakpoint at main
as a starting point. This view provides a number of useful panes such as
a view of the current values of the registers. Figure 3-1 shows a
common gdb session for the HelloWorld program.

Figure	3-1 Running GDB inside Visual Studio Code

gdb commands are entered at the bottom of the Debug Console
pane. Take care that after each command focus is set to the code

window rather than staying in the debug console.
Next, how to get started without using VS Code will be looked at.

Then a selection of gdb commands will be looked at, which will apply to
both environments.

Preparing	to	Debug
VS Code handles setting up to debug behind the scenes, but when using
the raw Pico-series SDK, there is a bit of preparation required. The GNU
debugger (GDB) can debug programs as it is, but this isn’t the most
convenient way to go. In the HelloWorld program there is the label
helloworld. If the program is debugged as is, the debugger won’t know
anything about this label, since the Assembler changed it into an
address in a .data section. There is a command-line option for the
Assembler that includes a table of all our source code labels and
symbols, so they can be used in the debugger. This makes the program
executable a bit larger. The Assembler command-line arguments don’t
need to be known; instead, CMake is provided with a command-line
argument to specify a debug build.

Often, debug mode is set while developing the program and then
turned off before releasing the program. Unlike some high-level
programming languages, debug mode doesn’t affect the machine code
that is generated, so the program behaves exactly the same in both
debug and non-debug modes.

Generally it isn’t a good idea to leave debug information in
programs for release, because besides making the program executable
larger, it is a wealth of information for hackers to help them reverse
engineer the program. If the program is open source, then this isn’t
important as anyone can look at the source code and build the program
with any options desired. There are several cases where hackers caused
mischief because the program still had debug information present.

Note Make sure the CMakeLists.txt is con�igured to output to the
UART and not the USB port. When gdb halts the CPU, the USB
connection is broken.

To add debug information to the program, invoke CMake setting the
CMAKE_BUILD_TYPE to Debug. To ensure everything is generated

properly, delete and recreate the build folder �irst:

rm -rf build
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Debug ..
make

Note The cmaked script from Chapter 1 could have been used to
save some typing.

Now everything is set up for debugging.

Beginning	GDB
Before starting the debugger, the openocd server needs to run:

sudo openocd -f interface/cmsis-dap.cfg -f
 target/rp2350.cfg -c "adapter speed 5000"

Or use the ocdg script created in Chapter 1.
To start debugging the “Hello World” program, enter the command

gdb HelloWorld.elf

This yields the abbreviated output:

$ gdb HelloWorld.elf
GNU gdb (Debian 13.1-3) 13.1
Copyright (C) 2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
...
warning: No executable has been specified and
target does not support
determining executable automatically. Try using
the "file" command.

warning: multi-threaded target stopped without
sending a thread-id, using first non-exited thread
0x1000023e in ?? ()
Reading symbols from HelloWorld.elf...
(gdb)

The warning is a side effect of programming a microcontroller and
there is no operating system. It means the program isn’t ready to run
yet; one more command needs to be entered to load it �irst.

Note If a .gdbinit �ile as indicated in Chapter 1 isn’t present,
then enter the command “target remote localhost:3333” at this point
to connect to the Pico-series board.

gdb is a command-line program.
(gdb) is the command prompt where commands are typed.
Hit Tab for command completion. Enter the �irst letter or two of a
command as a shortcut.

First, the program needs to be loaded; type

load

(or lo for short). This can be done repeatedly, so in another window,
changes to the program can be made and recompiled, and then load it
again. This way the gdb environment doesn’t need to be restarted for
each program change, and any commands entered like setting
breakpoints are still in effect. Raspberry recommends issuing a
“monitor reset init” command after load, which is a good idea, even if it
isn’t always necessary.

To make the program run, type

continue

(or c for short).
If minicom is run to con�igure to read the Debug Probe, the “Hello

World” strings will be seen going by. The program will run forever, but
can be stopped by typing control-c.

After terminating the program, it will either be inside HelloWorld.S
code or inside one of the Pico-series SDK’s routines.

To stop at the start of HelloWorld, set a breakpoint to stop in the
main routine. Do this by using the breakpoint command (or b):

b main

Now reset and rerun with

monitor reset init
continue

The result is

Continuing.

Thread 1 "rp2350.cm0" hit Breakpoint 1, main ()
 at /home/smist08/RP2040/Chapter
2/HelloWorld.S:14
14 MOV R7, #0 @ initialize counter to 0

As far as gdb is concerned, the whole .elf �ile is the program,
including the SDK code to initialize the Pico-series. Since the entire SDK
is provided as source code, anything that is described here for
debugging code works equally well for the SDK code. The provision is
that the SDK code needs to do initial setup on the RP2040/RP2350
before a breakpoint can stop the CPU.

To list the program, type

list

(or l).
This lists ten lines. Type

l

for the next ten lines. Type

list 1,1000

to list the entire program.
The list gives the source code for the program, including comments.

This is a handy way to �ind line numbers for other commands. If the
raw machine code needs to be examined, then gdb can disassemble the
program with

disassemble main

This shows the actual code produced by the Assembler with no
comments.

The program can be executed one instruction at a time with the step
command (or s). To see the values of the registers, use the info registers
(or i r) command:

Thread 1 "rp2350.cm0" hit Breakpoint 1, main ()
 at /home/smist08/RP2040/Chapter
2/HelloWorld.S:14
14 MOV R7, #0 @ initialize counter to 0
(gdb) s
15 BL stdio_init_all @ initialize uart or usb
(gdb) i r
r0 0xe000e434 -536812492
r1 0x10000235 268436021
r2 0x80808080 -2139062144
r3 0x1000318c 268448140
r4 0x100001d0 268435920
r5 0x88526891 -2007865199
r6 0x4f54710 83183376
r7 0x0 0
r8 0x43280035 1126694965
r9 0x0 0
r10 0x10000000 268435456
r11 0x62707361 1651536737
r12 0x4a6dc800 1248708608
sp 0x20082000 0x20082000
lr 0x1000018f 268435855

pc 0x10000236 0x10000236
<main+2>
xpsr 0x69000000 1761607680
fpscr 0x0 0
msp 0x20082000 0x20082000
psp 0x0 0x0
msp_ns 0x0 0x0
psp_ns 0xfffffffc 0xfffffffc
msp_s 0x20082000 0x20082000
psp_s 0x0 0x0
primask 0x0 0
basepri 0x0 0
faultmask 0x0 0
control 0x0 0
msplim_s 0x0 0x0
psplim_s 0x0 0x0
msplim_ns 0x0 0x0
psplim_ns 0x0 0x0
primask_s 0x0 0
basepri_s 0x0 0
faultmask_s 0x0 0
control_s 0x0 0
primask_ns 0x0 0
basepri_ns 0x0 0
faultmask_ns 0x0 0
control_ns 0x0 0

R7 was set to 0 as expected. Continue single stepping or enter
continue (or c) to continue to the next breakpoint if there is one. As
many breakpoints as required can be set. These can be seen with the
info breakpoints (or i b) command. Delete a breakpoint with the delete
command, specifying the breakpoint number to delete.

(gdb) i b
Num Type Disp Enb Address What
4 breakpoint keep y 0x10000234
/home/smist08/RP2040/Chapter 2/HelloWorld.S:14

(gdb) delete 4
(gdb) i b
No breakpoints or watchpoints.
(gdb)

Memory hasn’t been studied yet, but gdb has good mechanisms to
display memory in different formats. The main command is x with the
format

x /Nfu addr

where
N is the number of objects to display.
f is the display format where some common ones are

t for binary
x for hexadecimal
d for decimal
i for instruction
s for string

u is unit size and is any of
b for bytes
h for halfwords (16 bits)
w for words (32 bits)
g for giant words (64 bits)

The main routine is stored at memory location 0x10000234:

(gdb) x /4ubft main
0x10000234 <main>: 00000000 00100111 00000010
11110000
(gdb) x /4ubfi main
=> 0x10000234 <main>: movs r7, #0
 0x10000236 <main+2>: bl 0x10002d10
<stdio_init_all>
 0x1000023a <loop>: ldr r0, [pc, #12] @
(0x10000248 <loop+14>)

 0x1000023c <loop+2>: adds r7, #1
(gdb) x /4ubfx main
0x10000234 <main>: 0x00 0x27 0x02 0xf0
(gdb) x /4ubfd main
0x10000234 <main>: 0 39 2 -16

To exit gdb, type q (for quit, or type control-d).
Table 3-1 provides a quick reference to the gdb commands

introduced in this chapter. As new things are learned, the knowledge of
gdb will be enhanced. It is a powerful tool to help develop programs.
Assembly Language programs are complex and subtle, and gdb is great
at showing what is going on with all the bits and bytes.

Table	3-1 Summary of useful GDB commands

Command	(Short	Form) Description

break	(b)	line Set breakpoint at line.

continue	(c) Continue running the program.

step	(s) Single step program.

quit	(q	or	control-d) Exit gdb.

info	registers	(i	r) Print out the registers.

control-c Interrupt the running program.

info	break	(i	b) Print out the breakpoints.

delete	n Delete breakpoint n.

x	/Nuf	expression Show contents of memory.

load	(lo) Load the program.

monitor	reset	init	(mon	reset	init) Reset GDB.

It’s worthwhile to single step through the “Hello World” sample
program and examine the registers at each step to ensure what each
instruction is doing is understood.

Even if there isn’t a known bug, many programmers like to single
step through the code to look for problems and to convince themselves
that the code is correct. Often two programmers do this together as
part of the pair programming agile methodology.

Summary
In this chapter, the CMake program was introduced that will be used to
build programs. This is a powerful tool used to generate all the rules for
the various compilers and linkers needed. Then the GNU debugger was
introduced that will allow the troubleshooting of programs.
Unfortunately, programs have bugs, and a way is needed to single step
through them and examine all the registers and memory as through this
process. GDB is a technical tool, but it’s indispensable in �iguring out
what programs are doing.

In Chapter 4, how to load data into the CPU registers and
performing basic arithmetic will be studied. How negative numbers are
represented is covered along with learning new techniques for
manipulating binary bits.

Exercises
1.

Step through the “Hello World” program from Chapter 2, to ensure
complete understanding of the changes each instruction makes to
the registers. Ensure the output of the print statements can be
seen.

2.
Experiment with the various gdb commands to ensure familiarity
with their various options.

3.

Why does CMake generate a make�ile that is used to build a
program rather than building it itself?

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_4

4.	How	to	Load	and	Add
Stephen Smith1

Gibsons, BC, Canada

About Negative Numbers
About Two’s Complement
About the Raspberry Pi OS Calculator
About One’s Complement
Big- versus Little-Endian
About Bi-Endian
Pros of Little-Endian
Cons of Little-Endian
How to Shift and Rotate Registers
About the Carry Flag
Basics of Shifting and Rotating
How to Use MOV
Move Immediate
Moving Data from One Register to Another
ADD/ADC
Add with Carry
SUB/SBC
Shifting and Rotating
Loading All 32 Bits of a Register
MOV/ADD/Shift Example
Summary
Exercises

https://doi.org/10.1007/979-8-8688-2202-5_4

This chapter introduces the MOV, ADD, and SUB instructions, �irst by
gradually providing a foundation for understanding the functionality of
the commands, particularly in how parameters (operands) are handled.
In subsequent chapters, the rest of the ARM instruction set is covered
at a faster pace. Before delving into the speci�ics of MOV, ADD, and SUB
instructions, topics such as the representation of negative numbers, as
well as the concepts of shifting and rotating bits, will be addressed.

About	Negative	Numbers
In the previous chapter, the representation of positive integers as
binary numbers, known as unsigned integers, was discussed. However,
a question arises: how are negative numbers represented? One intuitive
approach might suggest designating a single bit to indicate whether a
number is positive or negative. While straightforward, this method
introduces additional complexity for the CPU, as processing would
require checking the sign bit and then determining the appropriate
arithmetic operation and ordering.

About	Two’s	Complement
The great mathematician John von Neumann, of the infamous
Manhattan Project, came up with the idea of the two’s	complement
representation for negative numbers, in 1945, when working on the
Electronic Discrete Variable Automatic Computer (EDVAC)—one of the
earliest electronic computers.

Consider a 1-byte hexadecimal number like 01. If 0xFF is added

0x01 + 0xFF = 0x100

(all binary ones) the result is 0x100. However, since these are 1-byte
numbers, then the 1 is over�low and the result is zero:

0x01 + 0xFF = 0x00

The mathematical de�inition of a number’s negative is a number
that when added to it makes zero; therefore, mathematically, FF is –1 in

the realm of 1-byte integers. The two’s complement form for any
number can be obtained by taking

2N - number

In the example, the two’s complement of 1 is

28 - 1 = 256 - 1 = 255 = 0xFF

This is why it’s called two’s complement. An easier way to calculate
two’s complement is to change all the 1s to 0s and all the 0s to 1s and
then add 1. Doing this to 1 results in

0xFE + 1 = 0xFF

Two’s complement is an interesting mathematical oddity for
integers that are limited to having a maximum value of one less than a
power of two, which is all computer representations of integers.

Why would computers represent negative integers this way? As it
turns out, addition is simple for the computer to execute. There are no
special cases; if the over�low is discarded, everything works out. This
means less circuitry is required to perform the addition, and as a result
it can perform faster. Besides handling the signs correctly, this also
results in the CPU using the same addition logic for signed and
unsigned arithmetic—another circuitry-saving measure. Consider

5 + -3

3 in 1-byte is 0x03 or 0000 0011 binary.
Inverting the bits is

1111 1100

Add 1 to get

1111 1101 = 0xFD

Now add

5 + 0xFD = 0x102 = 2

Since the size is limited to 1 byte or 8 bits, the leading 1 over�lows,
and the result is 2.

About	the	Raspberry	Pi	OS	Calculator
Fortunately, computers provide good tools to do the conversions and
arithmetic for us, but when signed numbers are seen in memory, these
need to be recognized for what they are. The Raspberry Pi OS calculator
calculates two’s complement; type the negative number in decimal and
then press the HEX button. Figure 4-1 shows the Raspberry Pi OS
calculator representing –3 as a 32-bit hexadecimal number.

Figure	4-1 The Raspberry Pi OS calculator shows the two's complement of 3

About	One’s	Complement
Change all the 1s to 0s and vice versa; then this is called one’s
complement, like two’s complement but without adding 1. There are
uses for the one’s	complement form, and these will be encountered in
later chapters.

Big-	versus	Little-Endian
When examining a 32-bit representation of 1 stored in memory, it is

01 00 00 00

rather than

00 00 00 01

Most processors pick one format or the other to store numbers.
Motorola and IBM mainframes use what is called Big-Endian, where
numbers are stored in the order of most signi�icant digit to least
signi�icant digit, in this case:

00 00 00 01

Intel processors use the Little-Endian format and store the numbers
in reverse order with the least signi�icant digit �irst, namely:

01 00 00 00

Figure 4-2 shows how the bytes in integers are copied into memory
in both Little- and Big-Endian formats. Notice how the bytes end up in
the reverse order to each other.

Figure	4-2 How integers are stored in memory in Little- versus Big-Endian formats

About	Bi-Endian
The ARM CPU is called Bi-Endian because it can do either. There is a
program status �lag that says which endianness to use. By default, the
Pico-series SDK uses Little-Endian like Intel processors.

Pros	of	Little-Endian
The advantage of the Little-Endian format is that it makes it easy to
change the size of integers, without requiring any address arithmetic.
To convert a 4-byte integer to a 1-byte integer, load the �irst byte,
assuming the integer is in the range of 0–255 and the other 3 bytes are
zero. For example, if memory contains the 4 bytes or word for 1, in
Little-Endian, the memory contains

01 00 00 00

If a 1-byte representation of this number is needed, take the �irst
byte; for the 16-bit representation, take the �irst 2 bytes. The key point

is that the memory address used is the same in all cases, saving an
instruction cycle to adjust it.

Cons	of	Little-Endian
Even though the Pico-series SDK uses Little-Endian, many protocols
like TCP/IP used on the Internet use Big-Endian and so require a
transformation when moving data from the RP2040/RP2350 to the
outside world. The other con is that the bytes are reversed to what a
human is expecting, and this can lead to confusion when debugging.

How	to	Shift	and	Rotate	Registers
There are sixteen 32-bit registers, and much of programming consists
of manipulating the bits in these registers. Two extremely useful bit
manipulations are shifting and rotating. Mathematically shifting all the
bits left one spot is the same as multiplying by two, and generally
shifting n bits is equivalent to multiplying by 2n. Conversely, shifting
bits to the right by n bits is equivalent to dividing by 2n. For example,
consider shifting the number 3 left by 4 bits:

0000 0011 (the binary representation of the
number 3)

Shift the bits left by 4 bits to get

0011 0000

which is

0x30 = 3 * 16 = 3 * 24

Shifting 0x30 right by 4 bits undoes this showing it is equivalent to
dividing by 24.

About	the	Carry	Flag
In the CPSR, there is a bit for carry. This is normally used to perform
addition on larger numbers. When adding two 32-bit numbers and the

result is larger than 32 bits, the carry �lag is set. How to use this in the
case of addition will be looked at in detail later in this chapter. When
shifting and rotating, it turns out to be useful to include the carry �lag.
This allows doing conditional logic based on the last bit shifted out of
the register.

Basics	of	Shifting	and	Rotating
There are �ive cases to cover, as follows:

Logical Shift Left
Logical Shift Right
Arithmetic Shift Right
Rotate Right
Rotate Right Extend

Logical	Shift	Left
This is quite straightforward, as the bits are shifted left by the indicated
number of places and zeros come in from the right. The last bit shifted
out ends up in the carry �lag.

Logical	Shift	Right
As the bits are shifted right, zeros come in from the left, and the last bit
shifted out on the left ends up in the carry �lag.

Arithmetic	Shift	Right
The problem with Logical Shift Right is if it is a negative number with a
zero coming in from the left, suddenly the number turns positive. If the
sign bit needs to be preserved, instead use Arithmetic Shift Right. This
makes a 1 come in from the left if the number is negative and a 0 if it is
positive. This is the correct form when shifting signed integers.

Rotate	Right
Rotating is like shifting, except the bits don’t go off the end—instead,
they wrap around and reappear from the other side. In this instance
Rotate Right shifts right, but the bits that leave on the right will
reappear on the left.

Rotate	Right	Extend
Rotate Right Extend behaves like Rotate Right, except that it treats the
register as a 33-bit register, where the carry �lag is the 33rd bit and is to
the right of bit 0. This type of rotation is limited to moving 1 bit at a
time; therefore, the number of bits is not speci�ied in the instruction.

How	to	Use	MOV
This section covers the two forms of the MOV instruction:
1.

MOV RD, #imm8
2.

MOV RD, RS
Move	Immediate
The �irst case is move immediate, which puts a small number into a
register. Here the immediate value can be any 8-bit quantity, and it will
be placed in the lower 8 bits of the speci�ied register. This form of the
MOV instruction is as simple as it gets and will be used frequently, for
example:

MOV R2, #3 @ Move 3 into register R2

Note Remember from Chapter 2 that most instructions encode
registers as only 3 bits. When an instruction does this, then only the
low registers R0–R7 are valid, and that is the case for using the
move immediate command.

Moving	Data	from	One	Register	to	Another
The second case is a version that moves one register into another. This
is actually two separate instructions, one that moves between two low
registers (R0–R7) while setting the CPSR and another that moves
between any registers but doesn’t set the CPSR. This is one of the few
instructions that allows access to the high registers R8–R15.

Note Remember that R12–R15 are special and changing these will
have side effects. R12 is the intra-procedure call scratch register
(IP), R13 is the stack pointer (SP), R14 is the link register (LR), and
R15 is the program counter (PC). Moving a value to R15 will cause
execution to jump to that location. How to properly use these
registers will be studied in later chapters, so avoid them for now.

Here are some examples:

MOV R1, R2
MOVS R1, R2 @ the S explicitly states the
first version.
MOV R9, R3
MOV SP, R10 @ SP = R13
MOV PC, R11 @ PC = R15

Now that small 8-bit values can be placed in registers, it is time to
do some arithmetic.

ADD/ADC
Start with addition. The various forms of the addition instruction are

ADD Rd, Rn, #imm3
ADD Rd, Rd, #imm8
ADD Rd, Rm, Rn
ADD Rd, Rd, Rm
ADD SP, SP, #imm7
ADD Rd, SP, #imm8
ADC Rd, Rd, Rm

These instructions all add their second and third parameters and
put the result in their �irst parameter Register	Destination	(Rd). A few
notes on these instructions are as follows:

Number 4, “ADD Rd, Rd, Rm,” is the only one that allows any register
(R0–R15) to be speci�ied; since there are only two registers, a couple
of extra bits are available.

Except for number 4 and where SP is explicitly used, all the registers
are low registers (R0–R7).
All the immediate operands are positive integers.
Numbers 5 and 6 are special instructions for dealing with the stack
register. The function of these is covered in Chapter 7.
Only the instructions that deal with the low registers set the carry
�lag in the CPSR.
The stack pointer must point to a word boundary, so any address in
SP must be divisible by 4. As a result, only multiples of 4 are allowed
in the immediate value allowing it to be four times larger than
expected.

Some examples are

ADD R4, R2, #7 @ this immediate allows 3
bits, so values 0-7
ADD R4, R4, #255 @ this one allows 8-bits,
so 0-255
ADD R4, #255 @ alternate for R4 = R4 +
255
ADD R10, R10, R13 @ The one instruction to
allow high registers
ADD R10, R13 @ if one source register
is the destination, it can be omitted
ADD SP, #508 @ shouldn’t do this
without matching subtraction
ADD R4, SP, #1020 @ 8-bit immediate so 0-
1020 valid in steps of 4

Add	with	Carry
The remaining instruction is Add with Carry (ADC). This uses the carry
�lag from the CPSR.

Think back on how to add numbers:

 17
+78
 95

1. First, add 7 + 8 and get 15.
2.

We put 5 in the sum and carry the 1 to the tens column.
3.

Now add 1 + 7 + the carry from the ones column, so add 1+7+1 and
get 9 for the tens column.

This is the idea behind the carry �lag. When an addition over�lows, it

sets the carry �lag, so it can be included in the sum of the next part.

Note A carry is always 0 or 1, so only a 1-bit �lag is needed for this.

The ARM processor adds 32 bits at a time, so the carry �lag is only
needed when dealing with numbers where the sum is larger than will
�it into 32 bits. A common application is to use the carry �lag to easily
add 64-bit or larger numbers.

The carry �lag is a bit in the CPSR; the CPSR will be looked at in
more detail in Chapter 5. If the result of an addition is too large, then
the carry �lag is set to 1; otherwise, it is set to 0.

To add two 64-bit integers, use two 32-bit registers to hold each
number. This example uses registers R2 and R3 for the �irst number, R4
and R5 for the second, and then R0 and R1 for the result. The code is

ADD R1, R3, R5 @ Lower order word
ADC R2, R4 @ Higher order word
MOV R0, R2 @ Move the result to the
desired register

The �irst ADD adds the lower-order 32 bits and sets the carry �lag, if
needed. It might set other �lags in the CPSR, but those will be looked at
later. The second instruction, ADC, adds the higher-order words, plus
the carry �lag.

Note	ADC only takes two registers, so the sum overwrote the
original number in R2, which is moved into R0 in the next

instruction. If the original value of R2 is still needed, it should be
saved to another register �irst.

The nice thing here is that although in 32-bit mode, 64-bit addition can
be performed in only two clock cycles (three if the MOV is counted).

SUB/SBC
Subtraction is the inverse of addition. There are a number of forms of
this:

SUB Rd, Rn, Rm
SUB Rd, Rn, #imm3
SUB Rd, Rd, #imm8
SBC Rd, Rd, Rn
SUB SP, SP, #imm7
NEG Rd, Rn

The operands are the same as those for addition, only now
calculating Rn – Rm. The carry �lag is used to indicate when a borrow is
necessary. SUB will clear the carry �lag if the result is negative and set it
if it’s positive. SBC then subtracts one if the carry �lag is clear.

NEG will negate a number: Rd = -Rn.

Shifting	and	Rotating
Here are the instructions for shifting and rotating the bits in a register:
1.

LSL Rd, Rm, #shift5
2.

LSL Rd, Rd, Rs
3.

LSR Rd, Rm, #shift5
4.

LSR Rd, Rd, Rs
5.

ASR Rd, Rm, #shift5

6. ASR Rd, Rd, Rs
7.

ROR Rd, Rd, Rs
These operations are Logical Shift Left (LSL), Logical Shift Right

(LSR), Arithmetic Shift Right (ASR), and Rotate Right (ROR). Here are a
few notes about these instructions:

The immediate value 5 bits gives values 0–31, suf�icient for a 32-bit
register.
This set of instructions only operates on the low registers (R0–R7).
The instructions that have Rd as the second operand can only
operate in place (the �irst and second operands must be the same,
and thus one can be omitted).

Here are some examples:

LSL R1, R1, #2 @ Shift register R1 left 2
bits (multiply by 4)
LSL R1, #2 @ Shorter form if the
registers are the same
LSR R1, R2, #8 @ Shift R2 right by one bytes
and place the result in R1
LSR R1, R3 @ Shift R1 right by the value
in R3
ASR R1, #8 @ Arithmetic shift R1 right by
one byte
ROR R1, R3 @ Rotate R1 right by value of
R3

Quite a few instructions have been introduced in this chapter. Now
on to combining a few of them to load a 32-bit register.

Loading	All	32	Bits	of	a	Register
So far, how to load 8 bits with an immediate operation has been seen;
but, with MOV combined with shifting and adding, all the bits can be
loaded, for example, to load R0 with the value 0x12345678. The
approach will be to do it 8 bits at a time. 8 bits will be loaded, shifted

into position, and then added to the result. Listing 4-1 contains the code
for this.

@ Initialize R0 with the leftmost byte
 MOV R0, #0x12 @ load the first 8-
bits
 LSL R0, #24 @ shift it left 24
bits into place
@ Load the next byte into R1
 MOV R1, #0x34 @ load the second byte
 LSL R1, #16 @ shift it into place
 ADD R0, R2 @ add it into R1
@ repeat for the third byte
 MOV R1, #0x56 @ load the third byte
 LSL R1, #8 @ shit it into place
 ADD R0, R1 @ add it to the sum
@ for the last byte no shift required
 MOV R1, #0x78 @ load the fourth
bytes
 ADD R0, R1

Listing	4-1 Loading all 32 bits of a register

That was a bit of work and demonstrates that working with a small
set of instructions can create quite a few program statements, but
remember each instruction is only 16 bits in size. In Chapter 6, how to
load registers from memory will be studied, which is less code, but
there will be cases later where tricks like this result in quick ways to
load registers (especially if there are zeroes in the middle). Next is an
example containing all these instructions.

MOV/ADD/Shift	Example
If the various code snippets in this chapter including the 32-bit register
loading and 64-bit addition are combined, Listing 4-2 results. This
program ensures the registers are initialized and provides comments of
what the results should be. There is a label “after” after the call to
stdio_init_all, which is a good place to set a breakpoint and then single

step through the code. Use gdb’s “i	r” command frequently to check the
values of the registers. At the end the program prints out the 64-bit sum
from the addition. The instructions are for using the Pico-series SDK,
but the code could easily be put into a VS Code project.
1.

Create a new project folder.
2.

Create a �ile called “movaddsubshift.S” containing Listing 4-2 in
that folder.

@
@ Examples of the MOV/ADD/SUB/Shift instructions.
@

.thumb_func @ Necessary
because sdk uses BLX
.global main @ Provide program
starting address to linker

main: BL stdio_init_all @ initialize uart
or usb

after: MOV R2, #3 @ Move 3 into
register R2
 MOV R1, R2 @ R1 is now also
3
 MOVS R1, R2 @ the S
explicitly states we want the first version.
 MOV R9, R2 @ R9 now is 3

@ we shouldn't play with SP or PC until we know
what we're doing.
 @ MOV SP, R10 @ SP = R13
 @ MOV PC, R11 @ PC = R15

 ADD R4, R2, #7 @ this immediate
allows 3 bits, so values 0-7
@ R4 is now 10 (3 + 7)

 ADD R4, R4, #255 @ this one allows
8-bits, so 0-255
@ R4 is now 265 (10 + 255)
 ADD R4, #255 @ alternate for
R4 = R4 + 255
@ R4 is now 520(265 + 255)
 MOV R7, #23 @ Can't load high
registers with immediate
 MOV R11, R7 @ So load R7 and
move it
 MOV R7, #54
 MOV R10, R7 @ if one source
register is the destination, it can be omitted
 ADD R10, R10, R11 @ The one
instruction to allow high registers
@ R10 is now 77 (23 + 54)
 ADD SP, SP, #508 @ shouldn’t do
this without matching subtraction
 SUB SP, SP, #508 @ Undo the
damage.
 ADD R4, SP, #1020 @ 8-bit immediate
but multiples of 4 so 0-1020 valid
@ need to check R4 in the debugger since it
depends on the value of SP
@ when I ran I got 0x200423fc but if SDK changes
this could change.
@ Repeat the above shifts using the Assembler
mnemonics.

 MOV R3, #8 @ will use this
to shift or rotate 1-byte
 MOV R2, #0xFF @ R2 = 255
 MOV R1, #4 @ R1 = 4
 LSL R1, R1, #2 @ Shift register
R1 left 2 bits (multiply by 4)
 LSL R1, #2 @ Shorter form if
the registers are the same

 LSR R1, R2, #8 @ Shift R2 right
by one bytes and place the result in R1
 LSR R1, R3 @ Shift R1 right
by the value in R3
 ASR R1, #8 @ Arithmetic
shift R1 right by one byte
 ROR R1, R3 @ Rotate R1 right
by value of R3

@ Load 0x12345678 into R3
@ Initialize R3 with the leftmost byte
 MOV R3, #0x12 @ load the first
8-bits
 LSL R3, #24 @ shift it left
24 bits into place
@ Load the next byte into R1
 MOV R1, #0x34 @ load the second
byte
 LSL R1, #16 @ shift it into
place
 ADD R3, R1 @ add it into R1
@ repeat for the third byte
 MOV R1, #0x56 @ load the third
byte
 LSL R1, #8 @ shit it into
place
 ADD R3, R1 @ add it to the
sum
@ for the last byte no shift required
 MOV R1, #0x78 @ load the fourth
bytes
 ADD R3, R1

@ Other registers for our upcoming 64-bit addition
 MOV R2, #0x12
 MOV R4, #0x54
 MOV R5, #0xf0

 LSL R5, #24 @ shift f0 over
to the high byte

@ 64-bit Addition (rigged to cause a carry)
@ Do sum:
@ R2 R3 0x12 0x12345678
@ R4 R5 0x54 0xF0000000
@ ----- ------------------
@ R0 R1 0x67 0x02345678

 ADD R1, R3, R5 @ Lower order
word
 ADC R2, R4 @ Higher order
word
 MOV R0, R2 @ Move the
result to where we want it

@ Save R0, R1 since printf will overwrite them
 MOV R6, R0 @ R6 = R0
 MOV R7, R1 @ R7 = R1

@ print out the sum
loop: MOV R1, R6 @ R1 is param2
 MOV R2, R7 @ R2 is param3
 LDR R0, =sumstr @ load address
of sumstr to param1
 BL printf @ call printf
 B loop @ loop in case
uart monitoring not started
.data
 .align 4 @ necessary
alignment
sumstr: .asciz "The sum is %x %x\n"

Listing	4-2 Examples of the MOV, ADD, and shift instructions along with 64-bit addition

Listing 4-3 contains the CMakeLists.txt �ile needed to build this
sample. Be sure to change the PICO_BOARD value to the precise Pico-

series board being used. Remember to copy pico_sdk_import.cmake
to the project folder.

cmake_minimum_required(VERSION 3.13)
set(PICO_BOARD pico2 CACHE STRING "Board type")
include(pico_sdk_import.cmake)
project(MovAddSub C CXX ASM)
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
pico_sdk_init()
include_directories(${CMAKE_SOURCE_DIR})
add_executable(MovAddSub
 movaddsubshift.S
)
pico_enable_stdio_uart(MovAddSub 1)
pico_enable_stdio_usb(MovAddSub 0)
pico_add_extra_outputs(MovAddSub)
target_link_libraries(MovAddSub pico_stdlib)

Listing	4-3 The CMakeLists.txt �ile for our sample

After building the program, have a look at MovAddSub.dis. The
program consists of forty-seven 16-bit instructions and two 32-bit
instructions (the two BL instructions). This means the program
contains 102 bytes of code. Even though it takes quite a few
instructions to get meaningful work done, the end program ends up
being extremely compact.

The program avoided making changes to registers R12–R15,
because if we change R15 (the program counter), the program will
jump to the value set, which in this case isn’t wanted. Registers R12–
R14 are used when functions are called, and if these are changed, the
call to printf won’t work. How to change R15 is covered in the next
chapter. How to use R12–R14 is covered in Chapter 7.

Summary
This chapter explored how negative integers are represented in
computers, followed by a discussion of Big- and Little-Endian byte

ordering. The concept of shifting and rotating bits within a register was
then introduced.

The next section provided a detailed examination of the MOV
instruction, which facilitates transferring data between CPU registers
or loading constants directly into a register.

Coverage included the ADD and ADC instructions, along with
methods for adding both 32- and 64-bit numbers. A brief introduction
to the SUB and SBC instructions was given. The discussion concluded
with an overview of various shift and rotation instructions.

The instructions were combined to load all 32 bits of a register and
then integrated into an example program to add two 64-bit integers.

In Chapter 5, conditionally executing code and branching and
looping are covered, which are the core building blocks of programming
logic.

Exercises
1.

Compute the 8-bit two’s complement for –79 and –23.
2.

What are the negative decimal numbers represented by the bytes
0xF2 and 0x83?

3.

Manually write out the bytes in the Little-Endian representation of
0x12345678.

4.

Manually write out the bytes for 0x23 shifted left by 3 bits.
5.

Manually write out the bytes for 0x4300 right shifted by 5 bits.
6.

Code a program to add two 96-bit numbers. Managing the limited
number of registers will be a problem to be solved.

7.

Code a program that performs 64-bit subtraction. Make sure that
the way it sets and interprets the carry �lag is understood. Use it to
reverse the operations from the 64-bit addition in Listing 4-2.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_5

5.	How	to	Control	Program	Flow
Stephen Smith1

Gibsons, BC, Canada

Unconditional Branch
About the CPSR
Branch on Condition
About the CMP Instruction
Loops
FOR Loops
WHILE Loops
If/Then/Else
Logical Operators
AND
EOR
ORR
BIC
MVN
TST
Design Patterns
Converting Integers to ASCII
Using Expressions in Immediate Constants
Storing a Register to Memory
Why Not Print in Decimal?
Performance of Branch Instructions
Summary
Exercises

https://doi.org/10.1007/979-8-8688-2202-5_5

A handful of Assembly Language instructions are now familiar, allowing
for linear execution, one after another. Programs can be built and
debugged with these foundations. This chapter introduces more
engaging program �low through conditional logic—such as
if/then/else statements in high-level languages—and loops, including
for and while constructs. With these instructions, the basics of coding
logical program structures are established.

Unconditional	Branch
The simplest branch instruction is

B label

which is an unconditional branch to a label. The label is interpreted
as an offset from the current PC register and has 11 bits in the
instruction allowing a range of –2,048 to 2,046. 211 is 2,048, but since
instructions must be on even addresses, this offset is multiplied by 2.
This instruction is like a goto statement in some high-level languages.

About	the	CPSR
The Current Program Status Register (CPSR) has been mentioned
several times without really looking at what it contains. The carry �lag
was discussed when looking at the ADD/ADC instructions. In this
section, a few more of the �lags in the CPSR will be looked at.

All the �lags it contains are shown in Figure 5-1, though a couple of
them won’t be discussed until later chapters. In this chapter, the group
of condition code bits commonly used for conditional logic are studied.

Figure	5-1 The bits in the CPSR

The condition �lags are

Negative: N is 1 if the signed value is negative and cleared if the result
is positive or 0.
Zero: Is set if the result is 0; this usually denotes an equal result from
a comparison. If the result is non-zero, this �lag is cleared.
Carry: For addition-type operations, this �lag is set if the result
produces an over�low. For subtraction-type operations, this �lag is set
if the result requires a borrow. Also, it’s used in shifting to hold the
last bit that is shifted out.
OVer�low: For addition and subtraction, this �lag is set if a signed
over�low occurred.

Note Some instructions may speci�ically set oVer�low to �lag
an error condition.

Q: This �lag is set to indicate under�low and/or saturation.

Branch	on	Condition
The branch instruction, at the beginning of this chapter, can take a
modi�ier that instructs it to only branch if a certain condition �lag in the
CPSR is set or clear.

The general form of the branch instructions is

B{condition} label

where {condition} is taken from Table 5-1.

Table	5-1 Condition codes for the branch instruction

{condition} Flags Meaning

EQ
NE

Z set
Z clear

Equal
Not equal

CS	or	HS C set Higher or same (unsigned >=)

CC	or	LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Over�low

{condition} Flags Meaning

VC V clear No over�low

HI C set and Z clear Higher (unsigned >)

LS C clear and Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always (same as no suf�ix)

For example,

BEQ main

will branch to main if the Z �lag is set. This seems a bit strange, why
isn’t the instruction BZ for branch on zero? What is equal here? To
answer these questions, the CMP instruction needs to be looked at.

About	the	CMP	Instruction
There are two forms of the CMP instruction:
1.

CMP Rn, Rm
2.

CMP Rn, #imm8
This instruction compares the contents of register Rn with the

second operand, by subtracting the second operand from Rn and
updating the status �lags accordingly. It behaves exactly like the SUB
instruction, except that it only updates the status �lags and discards the
result. For example, to do a branch only if register R4 is 45, code the
following:

CMP R4, #45
BEQ main

In this context, the mnemonic BEQ makes sense; since CMP
subtracts 45 from R4, the result is zero if they are equal, and the Z �lag
will be set. Studying Table 5-1 in this context should make the
mnemonics make more sense.

Note Rn must be a low register (R0–R7); Rm can be any register
(R0–R15). Both registers cannot be high registers.

Loops
With branch and comparison instructions in hand, constructing some
loops modeled on what is found in high-level programming languages is
looked at.

FOR	Loops
Consider the For loop from the Basic programming language:

FOR I = 1 to 10
 ... some statements...
NEXT I

This can be implemented as shown in Listing 5-1.

 MOV R2, #1 @ R2 holds I
loop: @ body of the loop goes here.

 @ Most of the logic is at the end
 ADD R2, #1 @ I = I + 1
 CMP R2, #10
 BLE loop @ IF I <= 10 goto loop

Listing	5-1 Basic For loop

To do this by counting down,

FOR I = 10 TO 1 STEP -1
 ... some statements...
NEXT I

can be implemented as shown in Listing 5-2.

 MOV R2, #10 @R2 holds I
loop: @ body of the loop goes here.

 @ The CMP is redundant since we
 @ are doing SUB.
 SUB R2, #1 @ I = I -1
 BNE loop @ branch until I = 0

Listing	5-2 Reverse For loop

Here an instruction is saved, since with the SUB instruction, the
CMP instruction isn’t needed.

WHILE	Loops
To code a basic While loop:

WHILE X < 5
 ... other statements
END WHILE

Initializing the variables and changing the variables aren’t part of
the While statement. These are separate statements that appear before
and in the body of the loop. In Assembly Language, one possible
implementation is shown in Listing 5-3.

 @ R4 is X and has been initialized
loop: CMP R4, #5
 BGE loopdone
 ... other statements in the loop body
...
 B loop
loopdone: @program continues

Listing	5-3 While loop

Note A while loop only executes if the statement is initially true, so
there is no guarantee that the loop body will ever be executed.

If/Then/Else
In this section, how to implement the following pseudo-code in
Assembly Language is considered:

IF <expression> THEN
 ... statements ...
ELSE
 ... statements ...
END IF

In Assembly Language, the <expression> needs to be evaluated and
the result placed in a register that can be used for comparison. For now,
the following simple <expression> is considered:

register comparison immediate-constant

In this way, the expression can be evaluated with a single CMP
instruction, for example, to code the following pseudo-code:

IF R5 < 10 THEN
 if statements ...
ELSE
 ... else statements ...
END IF

is implemented in Listing 5-4.

CMP R5, #10
 BGE elseclause

 ... if statements ...

 B endif
elseclause:

 ... else statements ...

endif: @ continue on after the /then/else ...

Listing	5-4 If/then/else statement

This is simple, but it is still worth putting in comments to be clear
which statements are part of the if/then/else and which statements are
in the body of the if or else blocks.

Tip Adding a blank line can make the code much more readable.

Logical	Operators
For the upcoming sample program, slightly more complexity is
required, and it will start manipulating the bits in the registers. The
ARM Cortex-M-series’ logical operators provide several tools to do this,
as follows:

AND Rd, Rd, Rm
EOR Rd, Rd, Rm
ORR Rd, Rd, Rm
BIC Rd, Rd, Rm
MVN Rd, Rm
TST Rn, Rm

These operate on each bit of the registers separately. Here are a
couple of notes:

All of these instructions only operate on the low registers (R0–R7).
For all the instructions where the �irst two operands are the same,
they can be shortened to specify two registers.

Figure 5-2 shows what each logical operation does to each
combination of input bits.

Figure	5-2 What each logical operator does with each pair of bits

AND
AND performs a bitwise logical and operation between each bit in Rd
and Rm, putting the result in Rd. Remember that logical and is true (1)
if both arguments are true (1) and false (0) otherwise.

AND is often used to mask off a byte of information. Suppose only
the high-order byte of a register is wanted. Listing 5-5 shows how to
code this.

@ mask off the high-order byte
MOV R5, #0xFF
LSL R5, #24 @ R5 = 0xFF000000
AND R6, R5

Listing	5-5 Using AND to mask a byte of information

This code will preserve the high-order byte while zeroing out the
other 3 bytes. It takes two instructions to load the mask, one to load
0xFF and then an LSL instruction to shift it into the correct position.

EOR
EOR performs a bitwise exclusive or operation between each bit in Rd
and Rm, putting the result in Rd. Remember that exclusive or is true (1)
if exactly one argument is true (1) and false (0) otherwise.

ORR
ORR performs a bitwise logical or operation between each bit in Rd
and Rm, putting the result in Rd. Remember that logical or is true (1) if
one or both arguments are true (1) and false (0) if both arguments are
false (0), for example:

MOV R5, #0xFF @ Load he second argument
ORR R6, R5 @ Perform R6 = R6 or R5

This sets the low-order byte of R6 to all 1 bits (0xFF) while leaving
the 3 other bytes unaffected.

BIC
BIC (Bit Clear) performs Rd and not Rm. The reason is that if the bit in
Rm is 1, then the matching bit in Rd will be set to 0. If the bit in Rm is 0,
then the corresponding bit in Rd will be unaffected.

MVN
MVN (Move Not) performs a bitwise not operation on each bit or Rm
and places the result in Rd. This calculates the one’s complement of Rd.

TST
TST (And Test) performs an AND operation between Rn and Rm,
setting the condition �lags and then discarding the result. This is like
the CMP instruction, but using AND instead of SUB, for example:

MOV R5, #0xFF @ load R5 with 0xFF
TST R6, R5 @ compute R5 and R6
BNE lowbits @ if non-zero then there are
low order bits

Design	Patterns
When writing Assembly Language code, there is a great temptation to
be creative. For instance, looping ten times could be done by setting the
tenth bit in a register and then shifting it right until the register is zero.
This works, but it makes reading the program dif�icult. If a program is
put aside and returned to at a later date, the programmer will be
scratching their head as to what the program does.

Design patterns are typical solutions to common programming
patterns. If a few standard design patterns are adopted on how to
perform loops and other programming constructs, it will make reading
programs much easier.

Design patterns make the programming more productive, since a
collection of tried-and-true patterns for most situations is available to
quickly utilize.

Tip In Assembly Language, make sure which design pattern being
used is documented, along with documenting the registers used.

Therefore, loops and if/then/else are implemented in the pattern of a
high-level language. If this is done, it makes the programs more reliable
and quicker to write. Later, the macro facility in the GNU Assembler will
be looked at to help with this.

Converting	Integers	to	ASCII
The �irst example of a loop is to convert a 32-bit register to ASCII. In the
HelloWorld program in Chapter 2, the Pico-series SDK’s printf function
was used to output the “Hello World” string. This program converts the
hex digits in the register to ASCII characters digit by digit. ASCII is one
way that computers represent all the letters, numbers, and symbols
that comprise the alphabet, as numbers that a computer can process,
for instance:

A is represented by 65.
B is represented by 66.
0 is represented by 48.
1 is represented by 49.
And so on.

The key point is that the letters A–Z are contiguous as are the
numbers 0–9. See Appendix A for all 255 characters.

Note For a single ASCII character that �its in 1 byte, enclose it in
single quotes, for example, ‘A’. If the ASCII characters are going to
comprise a string, use double quotes, for example, “Hello World!”.

Here is some high-level language pseudo-code for what will be
implemented in Assembly Language (Listing 5-6).

outstr = memory where we want the string + 9
@ (string is form 0x12345678 and we want
@ the last character)
FOR R5 = 8 TO 1 STEP -1
 digit = R4 AND 0xf
 IF digit < 10 THEN

 asciichar = digit + '0'
 ELSE
 asciichar = digit + 'A' - 10
 END IF
 *outstr = asciichar
 outstr = outstr - 1
NEXT R5

Listing	5-6 Pseudo-code to convert a register to ASCII

Listing 5-7 is the Assembly Language program to implement this. It
uses what was learned about loops, if/else, and logical statements.
Create a project folder for this along with a CMakeLists.txt as was done
in previous samples. This could also be done in VS Code.

@ Example to convert contents of register to ASCII
@
@ R1 - is also address of byte we are writing
@ R4 - register to print
@ R5 - loop index
@ R6 - current character
@ R7 - temp register

.thumb_func @ Necessary
because sdk uses BLX
.global main @ Provide program
starting address to linker

main: BL stdio_init_all @ initialize uart
or usb

printexample:
 @ Load R4 with 0x12AB
 MOV R4, #0x12 @ number to print
 LSL R4, #8
 MOV R7, #0xAB
 ADD R4, R7
 LDR R1, =hexstr @ start of string

 ADD R1, #9 @ start at least
sig digit
@ The loop is FOR r5 = 8 TO 1 STEP -1
 MOV R5, #8 @ 8 digits to
print
loop4: MOV R6, R4
 MOV R7, #0xf
 AND R6, R7 @ mask of least
sig digit
@ If R6 >= 10 then goto letter
 CMP R6, #10 @ is 0-9 or A-F
 BGE letter
@ Else it's a number so convert to an ASCII digit
 ADD R6, #'0'
 B cont @ goto to end if
letter: @ handle the digits A to F
 ADD R6, #('A'-10)
cont: @ end if
 STRB R6, [R1] @ store ascii
digit
 SUB R1, #1 @ decrement
address for next digit
 LSR R4, #4 @ shift off the
digit we just processed

 @ next R5
 SUB R5, #1 @ step R5 by -2
 BNE loop4 @ another for loop
if not done

repeat:
 LDR R0, =printstr
 LDR R1, =hexstr @ string to print
 BL printf
 B repeat

.align 4

.data
hexstr: .asciz "0x12345678"
printstr: .asciz "Register = %s\n"

Listing	5-7 Printing a register in ASCII

The best way to understand this program is to single step through it
in gdb and watch how it is using the registers and updating memory.
Remember from Chapter 1 that a debug build needs to be created with
the UART set for printing. Remember the Debug Probe will translate
this from UART to USB on the host computer. If not using VS code, then
have the updated .gdbinit in place, and run openocd via the ocdg
script.

Make sure the following code is understood and why

MOV R7, #0xf
AND R6, R7 @ mask of least sig digit

masks off the low-order digit; if not, review the “AND” section on
logical operators.

Since AND requires both operands to be 1 to result in 1, and’ing
something with 1s (like 0xf) keeps the other operator as is, whereas
and’ing something with 0s always makes the result 0.

In the loop, R4 is shifted 4 bits right with

LSR R4, #4

This shifts the next digit into position for processing in the next
iteration.

Note This is destructive to R4, and the original number is lost
during this algorithm.

Most of the elements present in this program have already been
discussed, but there are a couple of new elements; they are
demonstrated in the following.

Using	Expressions	in	Immediate	Constants

ADD R6, #('A'-10)

This demonstrates a couple of new tricks from the GNU Assembler:
1.

Including ASCII characters in immediate operands by putting them
in single quotes.

2.

Placing simple expressions in the immediate operands. The GNU
Assembler translates ‘A’ to 65, subtracts 10 to get 55, and uses that
as Operand2.

This makes the program more readable, since the intent can be
seen, rather than just having coded 55. There is no penalty to the
program in doing this, since the work is done when the program is
assembled, not when it is run.

Storing	a	Register	to	Memory

STRB R6, [R1]

The Store Byte (STRB) instruction saves the low-order byte of the
�irst register into the memory location contained in R1. The syntax [R1]
is to make clear that memory indirection is being used and not just
putting the byte into register R1. This is to make the program more
readable, so this operation isn’t confused with a corresponding MOV
instruction.

Accessing data in memory is the topic of Chapter 6, where this is
covered in far greater detail. The way the byte is stored could be made
more ef�icient, and this will be looked at then.

Why	Not	Print	in	Decimal?
In this example program, the conversion to a hex string is simple
because using AND 0xf is equivalent to getting the remainder when
dividing by 16. Similarly shifting the register right 4 bits is equivalent to
dividing by 16. To convert to a decimal, base 10, string, then the
program needs to be able to get the remainder from dividing by 10 and
later divide by 10.

So far, division instructions haven’t been covered yet. This places
converting to decimal beyond the scope of this chapter. A loop could be
written to implement the long division algorithm learned in elementary
school, but instead division is deferred until Chapter 12.

Performance	of	Branch	Instructions
In Chapter 2, the ARM Cortex-M series instruction pipeline was
discussed. Individually, an instruction requires three clock cycles to
execute, one for each of the following instructions:
1.

Load the instruction from memory to the CPU.
2.

Decode the instruction.
3.

Execute the instruction.
However, the CPU works on three instructions at once, each at a

different step, so on average execution time is one instruction every
clock cycle. But what happens when a branch occurs?

When the branch is executed, the next instruction is already
decoded, and the instruction two ahead is loaded. When the branch
happens, this work is thrown away, and the process starts over. This is
seen in the ARM documentation that most branch instructions take two
clock cycles to execute, whereas most other instructions only take one.
For a conditional branch, there is no penalty if the branch isn’t taken
and a BL instruction takes an extra cycle.

If a lot of branches are placed in the code, a performance penalty is
suffered. Another problem is that when programming with a lot of
branches, this leads to spaghetti code—meaning all the lines of code
are tangled together like a pot of spaghetti, which is understandably
quite hard to maintain.

Summary
In this chapter, the key instructions for performing program logic with
loops and if statements were studied. These included the instructions

for comparisons and conditional branching. Several design patterns
were discussed to code the common constructs from high-level
programming languages in Assembly Language. The instructions for
logically working with the bits in a register were looked at. How to
output the contents of a register in hexadecimal format was presented.

In Chapter 6, the details of how to load data to and from memory
are described.

Exercises
1.

Go through Table 5-1 of condition codes and ensure you
understand why each one is named the way it is.

2.

Create an Assembly Language framework to implement a
SELECT/CASE construct. The format is

SELECT number
 CASE 1:
 << statements if number is 1 >>
 CASE 2:
 << statements if number is 2>>
 CASE ELSE:
 << statements if not any other case
>>
END SELECT

3.
Construct a DO/WHILE statement in Assembly Language. In this
case the loop always executes once before the condition is tested:

DO
 << statements in the loop >>
UNTIL condition

4.
Modify the program in Listing 5-7 to print the hex representation of
two registers assuming that combined they hold a 64-bit integer.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_6

6.	Thanks	for	the	Memories
Stephen Smith1

Gibsons, BC, Canada

How to De�ine Memory Contents
How to Align Data
How to Load a Register
How to Load a Register with an Address
How to Load Data from Memory
Optimizing Small Read-Only Data Access
Indexing Through Memory
How to Store a Register
How to Convert to Uppercase
How to Load and Store Multiple Registers
Summary
Exercises

In this chapter, the memory of the Pico-series is explored in detail. Up to this
point, memory has primarily served as a location to store Assembly Language
instructions. The following sections provide an in-depth look at de�ining data
in memory, loading data into registers for processing, and writing results back
to memory.

The ARM Cortex-M series uses a load–store architecture. This means that
the instruction set is divided into two categories: one to load and store values
from and to memory and the other to perform arithmetic and logical
operations between the registers. The previous chapters mostly looked at the
arithmetic and logical operations. Now it is time to look at the other category
of load–store.

Memory addresses are 32 bits and instructions are 16 bits, presenting
similar challenges to those discussed in Chapter 4, where various techniques
were required to load 32 bits into a register.

https://doi.org/10.1007/979-8-8688-2202-5_6

In this chapter, these same techniques are applied to loading addresses,
along with additional strategies. The objective is to load a 32-bit address in a
single instruction whenever possible. However, before loading and building
memory addresses, the contents of memory need to be de�ined with the GNU
Assembler.

How	to	De�ine	Memory	Contents
The GNU Assembler contains several directives to help de�ine memory to use
in a program. These appear in a .data section of a program. First of all, some
examples are looked at and then summarized in Table 6-1. Listing 6-1 shows
how to de�ine bytes, words, and ASCII strings.

label: .byte 74, 0112, 0b00101010, 0x4A, 0X4a, 'J', 'H'
+ 2
 .word 0x1234ABCD, -1434
 .asciz "Hello World\n"

Listing	6-1 Sample memory directives

The �irst line de�ines 7 bytes all with the same value. Numbers can be
de�ined bytes in decimal, octal (base 8), binary, hex, or ASCII. Anywhere
numbers are de�ined, expressions can be used that the Assembler will
evaluate when it compiles a program.

Most memory directives start with a label, so they can be accessed
symbolically from the code. The only exception is if de�ining a larger array of
numbers that extends over several lines.

The .byte statement de�ines 1 or more bytes of memory. Listing 6-1 shows
the various formats that can be used for the contents of each byte, as follows:

A decimal integer starts with a non-zero digit and contains decimal digits 0–
9.
An octal integer starts with zero and contains octal digits 0–7.
A binary integer starts with 0b or 0B and contains binary digits 0–1.
A hex integer starts with 0x or 0X and contains hex digits 0–F.
A �loating-point number starts with 0f or 0e, followed by a �loating-point
number.

Note Do not start decimal numbers with zero (0), since this indicates the
constant is an octal (base 8) number.

The example then shows how to de�ine a word and a null-terminated ASCII
string, as seen in the HelloWorld program in Chapter 1. There are two pre�ix
operators that can be placed in front of an integer:

Negative (-) will take the two’s complement of the integer.
Complement (~) will take the one’s complement of the integer.

Here's an example:

.byte -0x45, -33, ~0b00111001

Table 6-1 lists the various data types that can be de�ined this way.

Table	6-1 The list of memory de�inition Assembler
directives

Directive Description

.ascii A string contained in double quotes

.asciz A 0-byte-terminated ASCII string

.byte 1-byte integers

.double Double-precision �loating-point values

.�loat Floating-point values

.octa 16-byte integers

.quad 8-byte integers

.short 2-byte integers

.word 4-byte integers

To de�ine a larger set of memory, there are a couple of mechanisms to use
without having to list and count them all, such as

.fill repeat, size, value

This repeats a value of a given size, repeat times, for example:

zeros: .fill 10, 4, 0

creates a block of memory with ten 4-byte words all with a value of zero.
The following code

.rept count

...

.endr

repeats the statements between .rept and .endr, count times, for example:

.rept 3
 .byte 0, 1, 2
.endr

is translated to

.byte 0, 1, 2

.byte 0, 1, 2

.byte 0, 1, 2

A rept/endr block can surround any Assembly Language code, for
instance, to make a loop by repeating the code count times.

The special character “\n” for a new line was used in the HelloWorld
string. There are a few more for common unprintable characters, as well as for
double quotes in strings. The “\” is called an escape character, which is a
metacharacter to de�ine special cases. Table 6-2 lists the escape character
sequences supported by the GNU Assembler.

Table	6-2 ASCII escape character sequence codes

Escape	Character	Sequence Description

\b Backspace (ASCII code 8)

\f Formfeed (ASCII code 12)

\n New line (ASCII code 10)

\r Return (ASCII code 13)

\t Tab (ASCII code 9)

\ddd An octal ASCII code (e.g., \123)

\xdd A hex ASCII code (e.g., \x4F)

\\ The "\" character

\” The double quote character

\anything-else anything-else

How	to	Align	Data
These data directives put the data in memory contiguously byte by byte.
However, ARM processors often require data to be aligned on word
boundaries or by some other measure. The Assembler can be instructed to
align the next piece of data with an .align directive, for instance, consider

.data

.byte 0x3F

.align 4

.word 0x12345678

The �irst byte is word aligned, but because it is only 1 byte, the next word
of data will not be aligned. If data needs to be word aligned, then add the
“.align 4” directive. This will result in 3 wasted bytes, but if this is a problem,
this may need to be rearranged in the memory in the .data section.

ARM Cortex-M-series Assembly Language instructions must be 16-bit
aligned, so if data is inserted in the middle of some instructions, then add an
.align directive before the instructions continue, or the program will crash
when it’s run.

In the next section, when data is loaded with PC-relative addressing, those
addresses must also be appropriately aligned. Usually, the Assembler gives an
error when alignment is required, and throwing in an “.align 2” or “.align 4”
directive is a quick �ix.

How	to	Load	a	Register
In this section, the LDR instruction and its variations will be looked at. The
LDR instruction is used to both load an address into a register and to load the
data pointed to by that address. There are methods to index through memory,
as well as support for strategies to get as much as possible out of the 16-bit
instructions. The cases will be examined one by one, including

Loading a memory address into a register
Loading data from memory
Indexing through memory

Note All the load and store instructions operate only on the low registers
(R0–R7); the only exceptions are PC- and SP-relative addressing that
explicitly use PC and SP.

First, how to load or create a memory address in a register is looked at.

How	to	Load	a	Register	with	an	Address
To create a memory address in a register, it can either be created from scratch
or based on an address that is already in another register. First of all, the
address is built directly.

How	to	Build	the	Address	Directly
When a program is written under a modern operating system, like Linux,
memory addresses can’t just be created, because they need to be provided by
the operating system to consider virtual memory and memory protection. On
a microcontroller, like the RP2040 or RP2350, there is no operating system,
virtual memory, memory management, or memory protection.

The memory map of the Pico-series is �ixed and documented in the Pico-
series SDK reference documentation. Therefore, there are many situations
where the address is known ahead of time and needs to be loaded into a
register. The previous chapter covered how to load a 32-bit register with any
value, and this will work in this situation. Fortunately, many of the addresses
that need to be dealt with are simple, such as 0xd0000014, which is the
memory address to write for setting GPIO pins. Since most of the address is
0s, it can be loaded into a register with

MOV R2, #0xd0
LSL R2, R2, #24 @ becomes 0xd0000000
ADD R2, #0x14

Here, it took three 16-bit instructions to build the address into R2 and
didn’t require any additional memory. Code like this can be tricky, so make
sure it is documented. Next, a more straightforward way of building addresses
is looked at using an existing memory address in the program counter (PC).

PC-Relative	Addressing
In Chapter 2, the LDR instruction was introduced to load the address of the
“Hello World” string. This was needed to pass the address of what to print to
the Pico-series SDK’s printf function. This is a simple and convenient example
of PC-relative addressing, since it doesn’t involve any other registers. As long
as the data is kept close to the code, it is painless. The disassembly of the LDR
instruction is shown below:

LDR R0, =helloworld

was formerly as follows:

ldr r0, [pc, #12] ; (10000370 <loop+0xe>)

Here is the instruction to load the address of the “helloworld” string into
R0. The Assembler knows the value of the program counter at this point, so it
can provide an offset to the correct memory address. Therefore, it’s called PC-

relative addressing. There’s a bit more complexity to this that will be
addressed soon that makes this much more �lexible.

The offset above has 8 bits in the instruction with a range of 0–255. To get
a greater range, the target address has to be 32-bit aligned, which means the
effective range is multiplied by four, to produce a range of 0–1,020.

Note This can also be done relative to the stack pointer (SP); however,
the SP will be examined in detail in Chapter 7.

How	to	Load	Data	from	Memory
In the HelloWorld program, the address was only needed to pass on to printf.
Generally, these addresses are used to load data into a register.

The simple form of LDR to load data given an address is

LDR{type} Rd, [Rm]

where type is one of the types listed in Table 6-3.

Table	6-3 The data types for the load/store
instructions

Type Meaning

B Unsigned byte

SB Signed byte

H Unsigned halfword (16 bits)

SH Signed halfword (16 bits)

SW Signed word (32 bits)

<none> Unsigned word (32 bits)

Listing 6-2 demonstrates the two-step process to load a register. First of
all, R1 is loaded with the address of the data wanted, and then that register is
used to indirectly load register R2 with the actual data.

 @ load the address of mynumber into R1
 LDR R1, =mynumber
 @ load the word stored at mynumber into R2
 LDR R2, [R1]
.data
mynumber: .WORD 0x1234ABCD

Listing	6-2 Loading an address and then the value

Stepping through this in the debugger allows the process of loading
0x1234ABCD into R2 to be watched step by step.

Note The square bracket syntax represents indirect memory access. This
means load the data stored at the address pointed to by R1, not move the
contents of R1 into R2.

When “LDR r0, [pc, #12]” was encountered, it looked like loading the address
of pc+12 but was actually loading the data stored at pc+12, which is why
square brackets were used. This works since the Assembler placed the desired
address at this location.

This works, but it took two instructions to load R2 with the value from
memory: one to load the address and then one to load the data. When
programming a RISC processor, each instruction executes extremely quickly
but performs only a small chunk of work. This can be improved in some cases
for read-only quantities.

Optimizing	Small	Read-Only	Data	Access
In the previous section, �irst, the address of the memory was loaded before a
second LDR instruction could load the actual data. This is necessary if the
memory must be in SRAM; however, small bits of read-only memory can be
loaded with one LDR instruction from the program section, typically �lashed
into the board’s ROM. This memory is only written to during the �lash process
but is �ine to use for read-only data, for example:

 LDR R2, mynumber
 B LOOP
mynumber: .WORD 0x1234ABCD

loads R2 with the value 0x1234ABCD using only one LDR instruction.
Notice that there is no equal sign before mynumber in the LDR instruction.
This tells the Assembler to load the quantity directly and not create an
indirection in the code section for it. The mynumber quantity must be
de�ined in code and be reasonably close to the LDR instruction.

Generally, this is the fastest way to load registers with speci�ic 32-bit
numbers, and this is used extensively in Chapter 9.

Note Unless the program is relocated from ROM into RAM, this memory
location cannot be written to when the program runs.

As algorithms develop, an address is usually loaded once and used repeatedly,
so most accesses take one instruction once going, such as indexing through
memory in a loop.

Indexing	Through	Memory
All high-level programming languages have an array construct. They can
de�ine an array of objects and then access the individual elements by index.
The high-level language will de�ine the array with something like the
following:

DIM A[10] AS WORD

Then it will access the individual elements with statements like those in
Listing 6-3.

// Set the 5th element of the array to the value 6
A[5] = 6
// Set the variable X equal to the 3rd array element
X = A[3]
// Loop through all 10 elements
FOR I = 1 TO 10
 // Set element I to I cubed
 A[I] = I ** 3
NEXT I

Listing	6-3 Pseudo-code to loop through an array

The ARM Cortex-M-series instruction set provides support for doing these
sorts of operations:
1.

De�ine an array of ten words (4 bytes each):

arr1: .FILL 10, 4, 0

2.
Load the array’s address into R1:

LDR R1, =arr1

Elements of this array can be accessed using LDR as demonstrated in
Listing 6-4 and graphically represented in Figure 6-1.

@ Load the first element

LDR R2, [R1]
@ Load element 3
@ The elements count from 0, so 2 is
@ the third one. Each word is 4 bytes,
@ so we need to multiply by 4
LDR R2, [R1, #(2 * 4)]

Listing	6-4 Indexing into an array

Figure	6-1 Graphical view of using R1 and an index to load R2

This is �ine for accessing hard-coded elements, but what about via a
variable? A register can be used as demonstrated in Listing 6-5.

@ The 3rd element is still number 2
MOV R3, #(2 * 4)
@ Add the offset in R3 to R1 to get the element.
LDR R2, [R1, R3]

Listing	6-5 Using a register as an offset

When incrementing through memory in a loop, increment either the base
address or increment the index register. Incrementing the base address is
completed as follows:

LDR R2, [R1] @ load the element R1 points to

ADD R1, #4 @ since each element is 4 bytes

Incrementing an index is similar:

LDR R2, [R1, R3] @ load the element R1+R3 points
to
ADD R3, #4 @ increment the index by the
element size

The �irst method has the advantage that it uses one fewer register and the
second that the base memory address isn’t destroyed by incrementing it.

Note The immediate value with the LDR instruction is only 8 bits, so can
only be offset by 255 bytes. Consequently, this is more often used to access
structure elements as demonstrated in Chapter 9.

How	to	Store	a	Register
The Store Register STR instruction is a mirror of the LDR instruction. All the
addressing modes discussed about for LDR work for STR. This is necessary
since in a load–store architecture, everything loaded must be stored after it is
processed in the CPU. The STR instruction was used a couple of times already
in examples.

The STR instruction is simpler than the LDR instruction, since it isn’t
involved with building addresses. The STR instruction only saves using
addresses that have already been constructed.

How	to	Convert	to	Uppercase
As an example of indexing through memory in loops, consider looping through
a string of ASCII bytes. To convert any lowercase characters to uppercase,
refer to Listing 6-6 that gives pseudo-code to do this.

i = 0
DO
 char = instr[i]
 IF char >= 'a' AND char <= 'z' THEN
 char = char - ('a' - 'A')
 END IF
 outstr[i] = char

 i = i + 1
UNTIL char == 0
PRINT outstr

Listing	6-6 Pseudo-code to convert a string to uppercase

This example uses NULL-terminated strings that are abundant in C
programming. These were used for printf strings and were created with the
.asciz directive. The string is the sequence of characters, followed by a NULL
(ASCII code 0 or \0) character. To process the string, simply loop until the
NULL character is encountered.

For and While loops have already been covered. The third common
structured programming loop is the DO/UNTIL loop that puts the condition at
the end of the loop. In this construct, the loop is always executed once. This is
desired, since if the string is empty the NULL character still needs to be
copied, so the output string will then be empty as well. The algorithm in
Listing 6-6 leaves the input string unchanged and produces a new output
string with the uppercase version of the input string. As is common in
Assembly Language processing, the logic is reversed to jump around the code
in the IF block. Listing 6-7 shows the updated pseudo-code.

 IF char < 'a' GOTO continue
 IF char > 'z' GOTO continue
 char = char - ('a' - 'A')
continue: // the rest of the program

Listing	6-7 Pseudo-code on how we will implement the IF statement

Listing 6-8 is the Assembly Language code to convert a string to
uppercase.

@
@ Assembler program to convert a string to
@ all upper case.
@
@ R0 - string parameter to printf
@ R3 - address of output string
@ R4 - address of input string
@ R5 - current character being processed
@

.thumb_func @ Necessary because sdk
uses BLX

.global main @ Provide program
starting address to linker

main: BL stdio_init_all @ initialize uart or
usb

 LDR R4, =instr @ start of input string
 LDR R3, =outstr @ address of output
string
@ The loop is until byte pointed to by R1 is non-zero
loop: LDRB R5, [R4] @ load character
 ADD R4, #1 @ increment pointer
@ If R5 > 'z' then goto cont
 CMP R5, #'z' @ is letter > 'z'?
 BGT cont
@ Else if R5 < 'a' then goto end if
 CMP R5, #'a'
 BLT cont @ goto to end if
@ if we got here then the letter is lowercase, so
convert it.
 SUB R5, #('a'-'A')
cont: @ end if
 STRB R5, [R3] @ store character to
output str
 ADD R3, #1 @ increment pointer
 CMP R5, #0 @ stop on hitting a
null character
 BNE loop @ loop if character
isn't null

@ Setup the parameters to printf our upper case string
loop2: LDR R0, =outstr @ string to print
 BL printf @ Call printf to output
 B loop2
.data
instr: .asciz "This is our Test String that we will
convert.\n"
outstr: .fill 255, 1, 0

Listing	6-8 Program to convert a string to uppercase

Note The provided source code combines samples of using data
directives, along with the various forms of the LDR and STR instructions
along with the uppercase conversion program.

This program is quite short, because besides all the comments and the code to
print the string, there are only 13 Assembly Language instructions to initialize
and execute the loop:
Two	instructions: Initialize the pointers for instr and outstr.
Five	instructions: Make up the if statement.
Six	instructions: For the loop, including loading a character, saving a
character, updating both pointers, checking for a null character, and
branching if not null.

It would be nice if STRB also set the condition �lags. LDR and STR just
load and save. They don’t have the functionality to examine what they are
loading and saving, so they can’t set the CPSR. Therefore, there's the need for
the CMP instruction in the UNTIL part of the loop to test for NULL. In this
example, the LDRB and STRB instructions are used since the string is
processed byte by byte. To convert the letter to uppercase, use

SUB R5, #('a'-'A')

The lowercase characters have higher values than the uppercase
characters, so use an expression that the Assembler evaluates to get the
correct number to subtract. Look at Listing 6-9, an abbreviated disassembly of
the program.

100002b6: 4c08 ldr r4, [pc, #32] @
(100002d8 <cont+0x10>)
100002b8: 4b08 ldr r3, [pc, #32] @
(100002dc <cont+0x14>)

100002ba <loop>:
100002ba: 7825 ldrb r5, [r4, #0]
100002bc: 3401 adds r4, #1
100002be: 2d7a cmp r5, #122 @
0x7a
100002c0: dc02 bgt.n 100002c8 <cont>
100002c2: 2d61 cmp r5, #97 @
0x61

100002c4: db00 blt.n 100002c8 <cont>
100002c6: 3d20 subs r5, #32

100002c8 <cont>:
100002c8: 701d strb r5, [r3, #0]
100002ca: 3301 adds r3, #1
100002cc: 2d00 cmp r5, #0
100002ce: d1f4 bne.n 100002ba <loop>
100002d0: 4802 ldr r0, [pc, #8] @
(100002dc <cont+0x14>)
100002d2: f002 fec1 bl 10003058
<__wrap_printf>
100002d8: 200005e7 .word 0x200005e7
100002dc: 20000616 .word 0x200006162000025f
<instr>:
2000028e <outstr>:

Listing	6-9 Disassembly of the uppercase program

The instruction is as follows:

LDR R4, =instr

is converted to the following:

ldr r4, [pc, #32] @ (100002d8 <cont+0x10>)

The comment documents that PC+32 is the address 0x100002d8. This is
calculated by taking the address of the next instruction (the one being
decoded as this one executes), which is at 0x100002b8, and adding 32 to get
the same 0x100002d8.

This shows how the Assembler added the literal for the address of the
string instr at the end of the code section. When the LDR is executed, it
accesses this literal and loads it into memory, and this provides the address
needed. The other literal added to the code section is the address of outstr.

To see this program in action, it is worthwhile to single step through it in
gdb. Watch the registers with the “i r” (info registers) command. To view instr
and outstr as the processing occurs, there are a couple of ways of doing it.
From the disassembly, the address of instr is 0x200005e7, so it can be viewed
with

(gdb) x /2s 0x200005e7

0x200005e7: "This is our Test String that we will
convert.\n"
0x20000616: "THI"
(gdb)

This is convenient since the x command knows how to format strings, but
it doesn’t know about labels. An alternative code is as below:

(gdb) p (char[10]) outstr
$8 = "TH\000\000\000\000\000\000\000"
(gdb)

The print (p) command knows about labels but doesn’t know about data
types. The label must be cast to tell it how to format the output. Gdb handles
this better with high-level languages, because it knows about the data types of
the variables. Next, two instructions for loading and storing multiple registers
at once are examined.

How	to	Load	and	Store	Multiple	Registers
There are multiple register versions of all the LDR and STR instructions. The
LDM and STM instructions take one register to use as the memory address
and then a list of low registers (R0–R7) to load or store. The data needs to be
contiguous, and the address register is updated to point after the data is
loaded or stored. For example, Listing 6-10 loads the address of a dword (the
address is still 32 bits) and then loads the dword into R2 and R3. Next, R2
and R3 are stored back into mydword2.

 LDR R1, =mydword
 LDM R1!, {R2, R3} @ load R2 & R3 from
memory at R1
 STM R1!, {R2, R3} @ store R2 & R3 to
memory at R1
.data
mydword: .DWORD 0x1234567887654321
mydword2: .DWORD 0x0

Listing	6-10 Example of loading and storing multiple registers

The exclamation mark after the base register R1! indicates that this
register will be updated as part of this operation—adding the length of the
data to it. This is handy, since when used in a loop, an extra ADD instruction

isn’t needed to update the memory address. In this case, LDM loads mydword
into R2 and R3 incrementing R1 by 8 in the process. Next, the STM
instruction writes R2 and R3 into memory location mydword2, again
incrementing R1 by 8.

Using this instruction, all the low registers R0–R7 can be loaded or stored
in one instruction. If one of the registers in the list is the base register, then it
won’t be incremented as part of the instruction. The Assembler gives a
warning when this happens.

Summary
With this chapter completed, data can be loaded from memory, operated on in
the registers, and then saved back to memory. How the data load and store
instructions help with arrays of data and how they help us index through data
in loops were examined.

In the next chapter, how to make code reusable is looked at. After all,
wouldn’t the uppercase program be handy if it could be called whenever
needed?

Exercises
1.

Create a small program to try out all the data de�inition directives the
Assembler provides. Assemble the program and examine the data in the
disassembly listing. Add some align directives and examine how the data
moves around.

2.
Explain how the LDR instruction lets any 32-bit address load in only one
16-bit instruction.

3.

Write a program that converts a string to all lowercase.
4.

Write a program that converts any non-alphabetic character in a NULL-
terminated string to a space.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_7

7.	Calling	Functions	and	Using	the	Stack
Stephen Smith1

Gibsons, BC, Canada

About Stacks on the Pico-series
How to Branch with Link
About Nesting Function Calls
About Function Parameters and Return Values
How to Manage the Registers
Summary of the Function Call Algorithm
More on the Branch Instructions
About the X Factor
Uppercase Revisited
About Stack Frames
Stack Frame Example
How to De�ine Symbols
How to Create Macros
About the Include Directive
How to De�ine a Macro
About Labels
Why Macros?
Summary
Exercises

This chapter explores methods for organizing code into independent
units known as functions. In software development, the process often
begins with low-level components, which serve as the foundation for
building more complex applications. Reusable components can be

https://doi.org/10.1007/979-8-8688-2202-5_7

called from any part of a program, promoting modularity and clarity.
Previous lessons covered looping, conditional logic, and arithmetic
operations. Now, attention turns to compartmentalizing code into
effective building blocks called stacks.

Stacks, a fundamental data structure in computer science, are used
for storing data on an as-needed basis. Building useful and reusable
functions requires a method for managing register usage so that
functions do not interfere with each other. Chapter 6 discussed storing
data in main memory, which persists for the duration of the program.
Small functions, such as those for converting strings to uppercase, may
need a few memory locations during execution, but this memory is no
longer required once the function completes. Stacks offer a solution for
managing register usage across function calls and supplying memory to
functions only for the length of their invocation.

Several low-level concepts are introduced at the outset, followed by
the process of combining them to effectively create and use functions.
The explanation begins with stacks and their implementation on the
Pico-series.

About	Stacks	on	the	Pico-series
In computer science, a stack is an area of memory where there are two
operations:
push: Adds an element to the area
pop: Returns and removes the element that was most recently added

This behavior is also called a LIFO (last in �irst out) queue.
When a program runs on the M-series CPU, the size of the stack is

con�igurable, by default 0x800 (2,048 words). In Chapter 2, it was
mentioned that register R13 had a special purpose as the stack pointer
(SP). This is why R13 is named SP in gdb, and typically it has a large
value, like 0x20041fe0. This is a pointer to the current stack location.

There are two instructions to save register values to the stack and
then restore those values. These are

PUSH {reglist}
POP {reglist}

The {reglist} parameter is a list of registers, containing a comma-
separated list of registers and register ranges. A register range is
something like R2–R4, which means R2, R3, and R4, for example:

PUSH {r0, r5-r7, LR}
POP {r0-r4, r6, PC}

The registers are stored on the stack in numerical order, with the
lowest register at the lowest address. Any low register (R0–R7) as well
as LR can be included in the PUSH instruction and PC in the POP
instruction. Why this functionality for LR and PC is useful will be seen
shortly. Figure 7-1 shows the process of pushing a register onto the
stack, and Figure 7-2 shows the reverse operation of popping that value
off the stack.

Figure	7-1 Pushing R5 onto the stack

Figure	7-2 Popping R4 from the stack

Before making use of these instructions, calling and returning from
functions need to be looked at.

How	to	Branch	with	Link
To call a function, the ability for the function to return execution to the
instruction after the point where the function was called is needed. This

is done with the other special register listed in Chapter 2, the link
register (LR), which is R14. To make use of LR, enter the Branch with
Link (BL) instruction, which is the same as the branch (B) instruction,
except it puts the address of the next instruction into LR before it
performs the branch, giving a mechanism to return from the function.

One way to return from a function is to use the Branch and
Exchange (BX) instruction. This branch instruction takes a register as
its argument, allowing it to branch to the address stored in LR to
continue processing after the function completes.

In Listing 7-1, the BL instruction stores the address of the following
MOV instruction into LR and then branches to myfunc. myfunc does
the useful work the function was written to do and then returns
execution to the caller by having BX branch to the location stored in LR,
which is the MOV instruction following the BL instruction.

 @ ... other code ...
 BL myfunc
 MOV R1, #4
 @ ... more code ...

myfunc: @ do some work
 BX LR

Listing	7-1 Skeleton code to call a function and return

This works for functions that are one level deep, but what if the
function needs to call (nest) other functions?

About	Nesting	Function	Calls
A function was successfully called and returned from, but the stack was
never used. Why introduce the stack �irst and then not use it? First of
all, think of what happens if during its processing myfunc calls another
function. This is fairly common, as code is written building on the
functionality previously developed.

If myfunc executes a BL instruction, then BL copies the next
address into LR overwriting the return address for myfunc; however,
myfunc won’t be able to return. What’s needed is a way to keep a chain

of return addresses as function after function is called. Rather, not a
chain of return addresses, but a stack of return addresses.

If myfunc is going to call other functions, then it needs to push	LR
onto the stack as the �irst thing it does and pop it from the stack just
before it returns. However, there is a problem here, because LR can be
PUSH’ed but not POP’ed. Instead, the PC can be POP’ed. The reason is
that this saves an instruction on returning from functions. POP	PC
loads the saved value of LR directly into the PC causing the processor to
jump to that memory location. Listing 7-2 shows this process,
demonstrating how convenient it is to store data to the stack that only
needs to exist for the duration of a function call.

 @ ... other code ...
 BL myfunc
 MOV R1, #4
 @ ... more code ...

myfunc: PUSH {LR}
 @ do some work ...
 BL myfunc2
 @ do some more work...
 POP {PC}
myfunc2: @ do some work
 BX LR

Listing	7-2 Skeleton code for a function that calls another function

If a function, such as myfunc, calls other functions, then it must save
LR; however, if it doesn’t call other functions, such as myfunc2, then it
doesn’t need to save LR. Programmers often PUSH	LR regardless, since
if the function is modi�ied later to add a function call and the
programmer forgets to add LR to the list of saved registers, then the
program fails to return and either goes into an in�inite loop or crashes.
The downside is that there is only so much bandwidth between the CPU
and memory, so to PUSH and POP more registers does take extra
execution cycles. The trade-off in speed versus maintainability is a
subjective decision depending on the circumstances.

When working in high-level programming languages, functions take
parameters and return results, and the same is true in Assembly
Language.

About	Function	Parameters	and	Return	Values
In high-level languages, functions accept parameters and return results,
and Assembly Language programming operates similarly. Inventing
custom mechanisms for parameter passing and result returning can
prove counterproductive. Code often needs to interoperate with other
programming languages. For example, it may be necessary to call new,
ef�icient functions from C code or to invoke functions written in C, such
as those provided by the Pico-series SDK.

To facilitate this, there is a set of design patterns for calling
functions. All the code that follows these patterns will be able to
interoperate freely.

The caller passes the �irst four parameters in R0, R1, R2, and R3. If
there are additional parameters, then they are pushed onto the stack. If
there are only two parameters, then R0 and R1 would be used. This
means the �irst four parameters are already loaded into registers and
ready to be processed. Additional parameters need to be popped from
the stack before being processed.

To return a value to the caller, place it in R0 before returning. If
more data needs to be returned, then have one of the parameters be an
address to a memory location where the additional data can be placed.
This is the same as C when it returns data through call by reference
parameters.

The ARM M-series CPU only contains 16 registers, and most
instructions only work with eight of these. How then to ensure that the
calling function’s registers aren’t wiped out when a function is called?
This is the topic of the next section.

How	to	Manage	the	Registers
If a function is called, chances are it was written by a different
programmer, and what registers it uses may not be known. It would be
very inef�icient if every register needed to be saved and restored every

time a function is called. As a result, there is a set of rules to govern
which registers a function can use and who is responsible for saving
each one:
R0–R3: These are the function parameters. The function can use
these for any other purpose modifying them freely. If the calling
routine needs them saved, it must save them itself.
R4–R11: These can be used freely by the called routine, but it is
responsible for saving them. That means the calling routine can
assume these registers are intact.
R12: This is the intra-procedure call scratch register and shouldn’t be
used. Some SDK functionality (like printf) will not work if this
register is modi�ied.
SP: This can be freely used by the called routine. The routine must
POP the stack the same number of times that it PUSH’es, so it is
intact for the calling routine.
LR: The called routine must preserve this as discussed in the last
section.
CPSR: Neither routine can make any assumptions about the CPSR. As
far as the called routine is concerned, all the �lags are unknown;
similarly, they are unknown to the caller when the function returns.

With all this, the function call algorithm can be summarized.

Summary	of	the	Function	Call	Algorithm
Calling	routine:
1.

If any of R0–R4 are needed, save them.
2.

Move the �irst four parameters into registers R0–R4.
3.

PUSH any additional parameters onto the stack.
4.

Use BL to call the function.
5.

Evaluate the return code in R0.

6. Restore any of R0–R4 that we saved.
Called	function:

1.
PUSH	LR and R4–R11 onto the stack.

2.
Perform the function body.

3.
Put the return code into R0.

4.
POP	PC and R4–R11.

Note Saving all of LR and R4–R11 is the safest and most
maintainable practice. However, if some of these registers aren’t
used, skip saving them to save some execution time on function
entry and exit. Further, the PUSH and POP instructions do not work
with high registers R8–R11; therefore, to save these on the stack,
move them to low registers and then use PUSH and POP. This is one
reason why the high registers are rarely used.

To save some steps just use R0–R3 for function parameters and
return codes and short-term work; then the calling routine never has
to save and restore them around function calls.

All parameters are assumed to be 32 bits here. The rule is that if
something is less than 32 bits, place it in a 32-bit register or stack
location to pass it. If the parameter is larger than 32 bits, break it up
into multiple 32-bit chunks and treat it as multiple parameters. For
larger items, passing by reference is usually easier (passing an
address to the parameter).

Now that all the branch instructions have been introduced, some extra,
perhaps unexpected, functionality needs to be noted.

More	on	the	Branch	Instructions

These are the branch instructions supported by the ARM Cortex-M-
series CPU:
1.

B label
2.

B{condition} label
3.

BX Rm
4.

BL label
5.

BLX Rm
Numbers 1 and 2 are 16-bit instructions, and the label is an
offset from the PC. Their range is –2,048 to 2,046 from the
current program location. This makes them appropriate for loops
and jumps within single functions. This prevents writing large
single routines, which jump madly about.
Number 4 is one of the 32-bit instructions supported by the ARM
Cortex-M-series. This is a PC-relative offset, but the range is –
16,777,216 to 16,777,214, which is larger than the amount of
memory contained in either SRAM or �lash on all current Pico-
series boards. This means any routine in the program or the SDK
can be called without issue.
Numbers 3 and 5 are the two forms that jump indirectly to an
address contained in register Rm. This register can be any high
or low register except the PC. Since the address is formed in a
register, it can be anywhere within the Pico-series’ full 32-bit
address space.

There is a bit more complexity around the BX and BLX instructions
that are covered next.

About	the	X	Factor
The BX instruction is called the Branch and Exchange instruction,
which begs the question: what is being exchanged? In the full ARM A-

series processors, like those used in the Raspberry Pi 5, when running
in 32-bit mode, there are two separate sets of instructions:
1.

The regular 32-bit-long instructions
2.

The 16-bit “thumb” instructions that include a small number of 32-
bit instructions

The exchange in the BX and BLX instructions is the mechanism to

switch between these two instruction sets. This allows code of type 1 to
call code of type 2 and vice versa. The ARM M-series CPU only supports
type 2 instructions, but there is only one instruction set, so why discuss
this? The problem to be careful of is that if BX or BLX thinks that
instruction set type 1 is being switched to, then the Pico-series CPU
throws a hardware fault, and the program terminates.

Since all instructions must be aligned on either 32-bit or 16-bit
boundaries, the address of all instructions is even. This means the low-
order bit in the register containing the memory address to jump to is
unused.

To keep instructions compact the ARM processor uses every bit
possible, so it uses this bit to indicate the instruction set type. If the
low-order bit is even, then it switches to type 1, full 32-bit instruction
mode, and if the address is odd, then it switches to type 2, 16-bit thumb
mode. The problem is that addresses are usually even and if nothing is
done then the Assembler generates even addresses and the M-series
CPU generates a hardware fault when it tries to jump. This is why

.thumb_func

must be placed before the de�inition of every function called by BX
or BLX.

The SDK calls main with a BLX instruction, and .thumb_func tells
the Assembler to set the low-order bit to one for this address.

In the uppercase function studied next, the BL instruction sets the
low-order bit in the return address it places in LR, so that it returns
correctly when BX is used.

Uppercase	Revisited
Next, the uppercase example from Chapter 6 is reorganized as a proper
function. The function is moved into its own �ile, and CMakeLists.txt is
modi�ied to include both the calling program and the uppercase
function. First, create a �ile called main.S containing Listing 7-3 for the
driving application.

@
@ Assembly Language program to convert a string to
@ all upper case by calling a function.
@
@ R0 - parameters to printf
@ R1 - address of output string
@ R0 - address of input string
@ R5 - current character being processed
@

.thumb_func @ Necessary
because sdk uses BLX
.global main @ Provide program
starting address

main: BL stdio_init_all @ initialize uart
or usb

repeat:
 LDR R0, =instr @ start of input
string
 LDR R1, =outstr @ address of
output string
 MOV R4, #12
 MOV R5, #13

 BL toupper

 LDR R0, =outstr @ string to print
 BL printf

 B repeat @ loop forever

.data
instr: .asciz "This is our Test String that we
will convert.\n"
outstr: .fill 255, 1, 0

Listing	7-3 Main program for the uppercase example

Now create a �ile called upper.S containing Listing 7-4, the
uppercase conversion function.

@
@ Assembly Language function to convert a string
to
@ all upper case.
@
@ R1 - address of output string
@ R0 - address of input string
@ R4 - original output string for length calc.
@ R5 - current character being processed
@

.global toupper @ Allow other
files to call this routine

toupper: PUSH {R4-R5} @ Save the
registers we use.
 MOV R4, R1
@ The loop is until byte pointed to by R1 is non-
zero
loop: LDRB R5, [R0] @ load character
 ADD R0, #1 @ increment instr
pointer
@ If R5 > 'z' then goto cont
 CMP R5, #'z' @ is letter > 'z'?
 BGT cont
@ Else if R5 < 'a' then goto end if
 CMP R5, #'a'

 BLT cont @ goto to end if
@ if we got here then the letter is lowercase, so
convert it.
 SUB R5, #('a'-'A')
cont: @ end if
 STRB R5, [R1] @ store character
to output str
 ADD R1, #1 @ increment outstr
pointer
 CMP R5, #0 @ stop on hitting
a null character
 BNE loop @ loop if
character isn't null
 SUB R0, R1, R4 @ get the length
by subtracting the pointers
 POP {R4-R5} @ Restore the
register we use.
 BX LR @ Return to caller

Listing	7-4 Function to convert strings to all uppercase

To build these, use the CMakeLists.txt �ile in Listing 7-5.

cmake_minimum_required(VERSION 3.13)
set(PICO_BOARD pico2 CACHE STRING "Board type")

include(pico_sdk_import.cmake)
project(Functions C CXX ASM)

set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(Functions
 main.S
 upper.S

)

pico_enable_stdio_uart(Functions 1)
pico_enable_stdio_usb(Functions 0)

pico_add_extra_outputs(Functions)

target_link_libraries(Functions pico_stdlib)

Listing	7-5 CMakeLists.txt for the uppercase function example

Step through the function call to examine the contents of important
registers and the stack. Set a breakpoint at main and single step
through the �irst couple of instructions and stop at the BL instruction.
The program sets R4 to 12 and R5 to 13, to make it easy to follow how
these are saved to the stack.

R4 0xc 12
R5 0xd 13
sp 0x20082000 0x20082000
lr 0x10003093 268447891
pc 0x10000280 0x10000280 <repeat+8>

Notice the BL instruction is at 0x10000280. Now single step again
to execute the BL instruction. Here are the same registers:

R4 0xc 12
R5 0xd 13
sp 0x20082000 0x20082000
lr 0x10000285 268436101
pc 0x100002ea 0x100002ea <toupper>

The LR has been set to 0x10000285, which is the instruction after
the BL instruction (0x10000368+5); this is 4 bytes for the length of the
BL instruction plus 1 more to indicate to continue to use 16-bit
instructions. The PC is now 0x100002ea, pointing to the �irst
instruction in the toupper routine. The �irst instruction in toupper is
the PUSH instruction to save registers R4 and R5. Single step through
that instruction and examine the registers again.

R4 0xc 12
R5 0xd 13
sp 0x20081ff8 0x20081ff8
lr 0x10000285 268436101
pc 0x100002ec 0x100002ec <toupper+2>

The stack pointer (SP) has been decreased by 8 bytes (two words)
to 0x20081ff8. None of the other registers have changed. PUSH’ing
registers onto the stack does not affect their values; it only saves them.
Looking at location 0x20081ff8 reveals the following:

((gdb) x /4xw 0x20081ff8
0x20081ff8: 0x0000000c 0x0000000d 0x00000000
0x00000000

Copies of registers R4 and R5 are now on the stack, and SP points to
the last item saved (and not the next free slot).

Note The toupper function doesn’t call any other functions, so LR
is not saved along with R4 and R5. If another function is ever called,
then LR will need to be added to the list. This version of toupper is
intended to be as fast as possible, so no extra code is added for
future maintainability and safety.

Most C programmers will object that this function is dangerous.
If the input string isn’t NULL terminated, then it will overrun the
output string buffer, overwriting the memory past the end. The
solution is to pass in a third parameter with the buffer lengths and
check in the loop to stop at the end of the buffer if there is no NULL
character.

This routine only processes the core ASCII characters. It doesn’t
handle the localized characters like “é”, which won’t be converted to
“E� ”.

This was a simple routine. Most functions have several internal
variables that require storage, often more than �it in the registers,
leading to the need for stack frames.

About	Stack	Frames
In the uppercase function, additional memory wasn’t needed since all
the work could be done with the available registers. When larger
functions are coded, more memory is often required for the variables.
Rather than add clutter to the .data section, these variables can be
stored on the stack.

PUSH’ing these variables on the stack isn’t practical, since they
usually need to be accessed in a random order, rather than the strict
LIFO protocol that PUSH/POP enforces.

To allocate space on the stack, use a subtract instruction to grow the
stack by the amount needed. Suppose three variables are needed, each
32-bit integers, say, a, b, and c. Therefore, 12 bytes need to be allocated
on the stack (3 variables × 4 bytes/word).

SUB SP, #12

This moves the stack pointer down by 12 bytes, providing a region
of memory on the stack to place the variables. Suppose a is in R0, b in
R1, and c in R2, these can then be stored using the following:

STR R0, [SP] @ Store a
STR R1, [SP, #4] @ Store b
STR R2, [SP, #8] @ Store c

Before the end of the function, the following needs to be executed

ADD SP, #12

to release the variables from the stack. Remember, it is the
responsibility of a function to restore SP to its original state before
returning. Next, an example is presented.

Stack	Frame	Example
Listing 7-6 is a simple skeletal example of a function that creates three
variables on the stack and shows how to use them. It isn’t intended to
be a working program, just demonstrating how to de�ine and access
variables.

@ Simple function that takes 2 parameters
@ VAR1 and VAR2. The function adds them,
@ storing the result in a variable SUM.
@ The function returns the sum.
@ It is assumed this function does other work,
@ including other functions.
@ Define our variables
 .EQU VAR1, 0
 .EQU VAR2, 4
 .EQU SUM, 8
SUMFN: PUSH {R4-R7, LR}
 SUB SP, #12 @ room for three 32-bit values
 STR R0, [SP, #VAR1] @ save passed in param.
 STR R1, [SP, #VAR2] @ save second param.
@ Do a bunch of other work, but don't change SP.
 LDR R4, [SP, #VAR1]
 LDR R5, [SP, #VAR2]
 ADD R6, R4, R5
 STR R6, [SP, #SUM]
@ Do other work
@ Function Epilog
 LDR R0, [SP, #SUM] @ load sum to return
 ADD SP, #12 @ Release local vars
 POP {R4-R7, PC} @ Restore regs and return

Listing	7-6 Simple skeletal function that demonstrates a stack frame

A new concept is introduced in this example—symbols via the .EQU
directive.

How	to	De�ine	Symbols
This example introduced the .EQU Assembler directive. This directive
allows the de�inition of symbols that will be substituted by the
Assembler before generating the compiled code. This way, the code can
be made more readable. Otherwise, keeping track of which variable is
which on the stack makes the code hard to read and is error-prone.
With the .EQU directive, each variable’s offset is de�ined once. Sadly,

.EQU only de�ines numbers, so it can’t be used to de�ine the whole “[SP,
#4]” string.

Functions aren’t the only way to make reusable code. Next, macros
are looked at.

How	to	Create	Macros
Another way to make the uppercase loop into a reusable bit of code is
to use macros. The GNU Assembler has powerful macro capabilities. An
Assembler macro creates a copy of the code in each place where it is
called, substituting any parameters. Consider this alternative
implementation of the uppercase program, where the �irst �ile is
mainmacro.S containing the contents of Listing 7-7.

@
@ Assembler program to convert a string to
@ all upper case by calling a function.
@
@ R0 - parameters to printf
@ R1 - address of output string
@ R0 - address of input string
@

.include "uppermacro.S"

.global mainmacro @ Provide
function starting address

mainmacro: PUSH {LR}

 toupper tststr, buffer

 LDR R0, =buffer @ string to
print
 BL printf

 toupper tststr2, buffer

 LDR R0, =buffer @ string to
print
 BL printf

 POP {PC}
.data
tststr: .asciz "This is our Test String that we
will convert.\n"
tststr2: .asciz "A second string to upper
case!!\n"
buffer: .fill 255, 1, 0

Listing	7-7 Program to call the toupper macro

The mainmacro.S code is set up as a function and called from
main.S with

@ Call macro version.
 BL mainmacro

This way only one project is needed for this chapter’s sample code.
These new �iles are also added to CMakeLists.txt.

The macro to uppercase the string is in uppermacro.S containing
Listing 7-8.

@
@ Assembler program to convert a string to
@ all uppercase (implemented as a macro)
@
@ R1 - address of output string
@ R0 - address of input string
@ R2 - original output string for length calc.
@ R3 - current character being processed
@

@ label 1 = loop
@ label 2 = cont

.MACRO toupper instr, outstr

 LDR R0, =\instr
 LDR R1, =\outstr
 MOV R2, R1
@ The loop is until byte pointed to by R1 is non-
zero
1: LDRB R3, [R0] @ load character
 ADD R0, #1 @ increment instr
pointer
@ If R5 > 'z' then goto cont
 CMP R3, #'z' @ is letter > 'z'?
 BGT 2f
@ Else if R5 < 'a' then goto end if
 CMP R3, #'a'
 BLT 2f @ goto to end if
@ if we got here then the letter is lowercase, so
convert it.
 SUB R3, #('a'-'A')
2: @ end if
 STRB R3, [R1] @ store character to
output str
 ADD R1, #1 @ increment outstr
pointer
 CMP R3, #0 @ stop on hitting a
null character
 BNE 1b @ loop if character
isn't null
 SUB R0, R1, R2 @ get the length by
subtracting the pointers
.ENDM

Listing	7-8 Macro version of the toupper function

The �irst new concept is the .include directive.

About	the	Include	Directive
The �ile uppermacro.S de�ines the macro to convert a string to
uppercase. The macro doesn’t generate any code; it just de�ines the
macro for the Assembler to insert wherever it is called from. This �ile

doesn’t generate an object (∗.o) �ile; rather, it is included by whichever
�ile needs to use it.

The .include directive

.include "uppermacro.S"

takes the contents of this �ile and inserts it at this point, so that the
source �ile becomes larger. This is done before any other processing.
This is like the C #include preprocessor directive.

Now that a mechanism to include macros is set, how to de�ine
macros is looked at next.

How	to	De�ine	a	Macro
A macro is de�ined with the .MACRO directive. This gives the name of
the macro and lists its parameters. The macro ends at the following
.ENDM directive. The form of the directive is

.MACRO macroname parameter1, parameter2, ...

Within the macro, parameters are speci�ied by preceding their name
with a backslash, for instance, \parameter1 to place the value of
parameter1. The toupper macro de�ines two parameters instr and
outstr:

.MACRO toupper instr, outstr

How the parameters are used in the code can be seen with \instr
and \outstr. These are text substitutions and need to result in correct
Assembly Language syntax, or an error will result. In the code, the
labels are replaced by numbers. Why is that?

About	Labels
The labels “loop” and “cont” are replaced with the labels “1” and “2”.
This takes away from the readability of the program. The reason to do
this is that if the original labels were left in place, an error that a label is
de�ined more than once would occur if the macro is used more than
once. The strategy here is that the Assembler lets numeric labels be
de�ined as many times as needed. To reference them in the code, use

BGT 2f
BNE 1b @ loop if character isn't null

The f after the 2 means the next label 2 is in the forward direction.
The 1b means the next label 1 is in the backward direction.

To prove that this works, toupper is called twice in mainmacro.S to
show that everything works and that this macro can be reused as many
times as needed. But why use macros over functions?

Why	Macros?
Macros substitute a copy of the code at every point they’re used. This
makes an executable �ile larger. Look at the disassembly �ile for this
project and notice the two copies of code inserted. With functions,
there is no extra code generated each time. This is why functions are
appealing, even with the extra work of dealing with the stack.

The reason macros get used is because of performance. The Pico-
series runs at 133MHz or 150MHz, which isn’t that fast by modern
standards. Remember that whenever a branch is taken, the execution
pipeline needs to be restarted, making branching an expensive
instruction. With macros, the BL branch to call the function is
eliminated along with the BX branch to return. The PUSH and POP
instructions to save and restore any registers used are also eliminated.
If a macro is small and used a lot, there could be considerable execution
time savings.

Note Notice in the macro implementation of toupper that only
registers R0–R3 are used. This is to avoid using any registers
important to the caller. There is no standard on how to regulate
register usage with macros, like there is with functions, so it is up to
the programmer to avoid con�licts and strange bugs.

Summary
This chapter covered the ARM stack and how it is used to help
implement functions. How to write and call functions was covered as a
�irst step to creating libraries of reusable code. How to manage register

usage was studied, so there aren’t any con�licts between calling
programs and functions. The function calling protocol was learned that
allows interoperation with other programming languages. De�ining
stack-based storage for local variables was looked at along with how to
use this memory.

Finally, the GNU Assembler’s macro ability was covered as an
alternative to functions in certain performance-critical applications.

Next, in Chapter 8, more detail are provided about calling and being
called by C routines, in particular, how to interact with the Pico-series
SDK.

Exercises
1.

Suppose a function uses registers R4, R5, R6, R8, and R9. Further,
this function calls other functions. Code the prologue and epilogue
of this function to store and restore the correct registers to/from
the stack. Be careful how the high registers R8 and R9 are handled.

2.
Write a function to convert text to all lowercase. Have this function
in one �ile and a main program in another �ile. In the main program,
call the function three times with different test strings.

3.
Convert the lowercase program in Exercise 2 to a macro. Have it
run on the same three test strings to ensure it works properly.

4.

Why does the function calling protocol have some registers that
need to be saved by the caller and some by the callee? Why not
make all saves by one or the other?

5.
Why would the SDK call the main routine with a BLX instruction
rather than a BL instruction?

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_8

8.	Interacting	with	C	and	the	SDK
Stephen Smith1

Gibsons, BC, Canada

How to Wire Flashing LEDs
How to Flash LEDs with the SDK
How to Call Assembly Routines from C
How to Embed Assembly Code Inside C Code
Summary
Exercises

In the early days of microcomputers, like the Apple II, people wrote
complete applications in Assembly Language, such as the �irst
spreadsheet program VisiCalc. Many video games were written in
Assembly Language to squeeze every bit of performance possible out of
the hardware. Modern compilers, like the GNU C compiler, generate
adequate code, and microcontrollers, like the Pico-series, are much
faster. As a result, most applications are written in a collection of
programming languages, where each excels at a speci�ic function.

The Pico-series SDK contains a wealth of ef�icient code, offering
extensive resources that can be leveraged instead of developing
everything from scratch. Most of the SDK is implemented in C, with
numerous Assembly Language routines available for further study.

This chapter looks at using components written in C/C++ from
Assembly Language code and at how other languages can make use of
the fast-ef�icient code being written in Assembly Language.

This chapter uses the Raspberry Pi Pico-series’ hardware I/O
capabilities. How to set up three �lashing LEDs is described, and then

https://doi.org/10.1007/979-8-8688-2202-5_8

how to control them using different techniques is covered over the
following two chapters. This chapter shows how to control the LEDs
using the Pico-series SDK. This provides more experience using C
functions and the extra complexity present in the SDK.

How	to	Wire	Flashing	LEDs
Before writing programs, circuitry needs to be wired to connect three
LEDs to a breadboard. This project requires

Three 220Ω resistors (red, red, black)
Three LEDs (preferably of different colors, such as red, blue, and
green)
Four connecting differently colored wires

These instructions assume that the pins are already soldered to the
Pico-series board that has been plugged into a breadboard as outlined
in Chapter 1. These parts are typically included in any Raspberry Pi or
Arduino electronics starter kit.

Each of three LEDs is connected to a GPIO pin, in this case 18, 19,
and 20, and then to ground through a resistor. The resistor is needed
because the GPIO is speci�ied to keep the current under 16mA, or the
circuits can be damaged. Most kits come with several 220Ω resistors.
By Ohm’s law, I = V/R, these would cause the current to be 3.3V/220Ω =
15mA, so just right. The resistor needs to be in series with the LED,
since the LED’s resistance is quite low (typically around 13Ω and
variable).

Warning LEDs have both a positive and a negative side. The
positive side must connect to the GPIO pin; reversing it could
damage the LED.

Note The GPIO pins are numbered differently internally and
externally. When the program accesses GPIO 18 internally, this is
wired to the external pin 24 on a Raspberry Pi Pico 2 board. Check
the pinout diagram for whichever board being used, to ensure the
correct pin is wired up.

Figure 8-1 shows how the LEDs and resistors are wired on a
breadboard.

Figure	8-1 Breadboard with LEDs and resistors installed

Figure 8-2 shows a schematic of the �lashing LEDs hardware to help
with setting it up.

Figure	8-2 Schematic for the �lashing LEDs

With the hardware wired, it’s time to write some code.

How	to	Flash	LEDs	with	the	SDK
In this chapter, the LEDs are �lashed using functions in the Pico-series
SDK. In later chapters, this process is repeated using Assembly
Language to write to the hardware directly and then using the Pico-
series’ PIO coprocessors to of�load the work from the CPU. Using the
SDK is easiest, since it provides well-tested, ready-to-use functions that
hide the complexities of directly interacting with hardware devices.
Later parts of the program that aren’t performant can be identi�ied and
rewritten in Assembly Language or use coprocessors to create a better
experience.

In this example, four SDK functions are used:
1.

void gpio_init (uint gpio): Initialize a pin for GPIO. Many pins have
multiple functions.

2.

static void gpio_set_dir (uint gpio, bool out): Set the direction of the
pin, either input or output.

3.

static void gpio_put (uint gpio, bool value): Set a GPIO pin either
high or low.

4.

void sleep_ms (uint32_t ms): Sleep for the speci�ied number of
milliseconds.

C functions follow the calling convention covered in Chapter 7;

therefore, the �irst parameter is placed in R0 and the second parameter
in R1. None of these functions return a value, so R0 doesn’t need to be
checked after making the call. Basically, the following is done:
1.

Initialize the three GPIO pins 18, 19, and 20.
2.

Sequentially turn on a LED.
3.

Sleep for one-�ifth of a second.
4. Turn off the LED.

Listing 8-1 contains the Assembly Language source code for this,

which should be placed in the �ile �lashledssdk.S.

@
@ Assembler program to flash three LEDs connected
to
@ the Raspberry Pi Pico GPIO port using the Pico
SDK.
@

 .EQU LED_PIN1, 18
 .EQU LED_PIN2, 19
 .EQU LED_PIN3, 20
 .EQU GPIO_OUT, 1
 .EQU sleep_time, 200

.thumb_func @ Necessary because sdk uses BLX

.global main @ Provide program starting address

main:
 MOV R0, #LED_PIN1
 BL gpio_init
 MOV R0, #LED_PIN1
 MOV R1, #GPIO_OUT
 BL link_gpio_set_dir
 MOV R0, #LED_PIN2
 BL gpio_init
 MOV R0, #LED_PIN2
 MOV R1, #GPIO_OUT
 BL link_gpio_set_dir
 MOV R0, #LED_PIN3
 BL gpio_init
 MOV R0, #LED_PIN3
 MOV R1, #GPIO_OUT
 BL link_gpio_set_dir

loop: MOV R0, #LED_PIN1
 MOV R1, #1
 BL link_gpio_put
 LDR R0, =sleep_time
 BL sleep_ms
 MOV R0, #LED_PIN1
 MOV R1, #0
 BL link_gpio_put
 MOV R0, #LED_PIN2
 MOV R1, #1
 BL link_gpio_put
 LDR R0, =sleep_time
 BL sleep_ms
 MOV R0, #LED_PIN2
 MOV R1, #0
 BL link_gpio_put
 MOV R0, #LED_PIN3
 MOV R1, #1
 BL link_gpio_put
 LDR R0, =sleep_time
 BL sleep_ms
 MOV R0, #LED_PIN3
 MOV R1, #0
 BL link_gpio_put
 B loop

Listing	8-1 Assembly Language source code to �lash the LEDs using the SDK

This program calls link_gpio_put and link_gpio_set_dir rather than
gpio_put and gpio_set_dir directly. Look in the SDK, to �ind gpio_put
de�ined in gpio.h as

static inline void gpio_set_dir(uint gpio, bool
out) {
 uint32_t mask = 1ul << gpio;
 if (out)
 gpio_set_dir_out_masked(mask);
 else

 gpio_set_dir_in_masked(mask);
}

The problem is that this function is de�ined as inline. This tells the C
compiler that this isn’t a function and to insert the code inline wherever
it is called. This is similar to the macros in Chapter 7. Since this isn’t a
function, just a snippet of C code, it can’t be called directly from the
Assembly Language code, because there is nothing to call. This leads to
Listing 8-2, where a C �ile can be provided that wraps this inline C code
and exposes them as functions that can be called.

/* C wrapper functions for the RP2040 SDK
 * Incline functions gpio_set_dir and gpio_put.
 */

#include "hardware/gpio.h"

void link_gpio_set_dir(int pin, int dir)
{
 gpio_set_dir(pin, dir);
}

void link_gpio_put(int pin, int value)
{
 gpio_put(pin, value);
}

Listing	8-2 C wrapper functions for the inline code we need from the SDK

Note This is preferable to editing the source code in the SDK to
remove the inline keyword, as it would cause problems getting
newer versions of the SDK.

The CMakeLists.txt �ile is given in Listing 8-3 and is standard.

cmake_minimum_required(VERSION 3.13)

set(PICO_BOARD pico2 CACHE STRING "Board type")

include(pico_sdk_import.cmake)
project(test_project C CXX ASM)

set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(FlashLEDsSDK
 flashledssdk.S
 sdklink.c
)

pico_enable_stdio_uart(FlashLEDsSDK 1)

pico_add_extra_outputs(FlashLEDsSDK)

target_link_libraries(FlashLEDsSDK pico_stdlib)

Listing	8-3 CMakeLists.txt �ile for this project

With these �iles, follow the procedures in Chapter 1 to build the uf2
�ile and copy it to the Raspberry Pi Pico. The LEDs should �lash in turn
quickly repeatedly. If the program doesn’t work, then create a debug
build and step through the program in gdb.

New approaches to functions like gpio_put will be covered in the
following chapters, but initialization functions like gpio_init are
typically not time critical and using the SDK function is �ine.

How	to	Call	Assembly	Routines	from	C
A typical scenario is to write most of an application in C and then call
Assembly Language routines in speci�ic time-critical use cases.
Following the function calling protocol from Chapter 7, C won’t be able
to tell the difference between Assembly Language functions and any
other functions written in C.

An example is to call the toupper function from Chapter 7 from C.
Listing 8-4 contains the C code for uppertst.c to call this Assembly
Language function.

//
// C program to call the Assembly Language
// toupper routine.
//

#include <stdio.h>
#include "pico/stdlib.h"

extern int mytoupper(char *, char *);

#define MAX_BUFFSIZE 255
void main()
{
 char *str = "This is a test.";
 char outBuf[MAX_BUFFSIZE];
 int len;

 stdio_init_all();

 while(1)
 {
 len = mytoupper(str, outBuf);
 printf("Before str: %s\n", str);
 printf("After str: %s\n", outBuf);
 printf("Str len = %d\n", len);
 }
}

Listing	8-4 Main program to show calling the toupper function from C

The name of the toupper function is changed to mytoupper, since
there is already a toupper function in the C runtime. Without this
change a multiple-de�inition error results. This was done in both the C
and the Assembly Language code; otherwise, the function is the same

as in Chapter 7. The CMakeLists.txt �ile is as expected simply listing
both upper.S and uppertst.c.

De�ine the parameters and return code for the function to the C
compiler with

extern int mytoupper(char *, char *);

This should be familiar to all C programmers; this must be done for
C functions as well. Usually, all these de�initions are gathered together
and put into a header (.h) �ile.

When the program is run, the string is converted to uppercase as
expected, but the string length appears one greater than anticipated.
That is because the length includes the NULL character, which isn’t the
C standard. If this routine is used a lot with C, subtract 1, so that the
length is consistent with other C runtime routines.

How	to	Embed	Assembly	Code	Inside	C	Code
The GNU C compiler allows Assembly Language code to be embedded
in the middle of C code. It contains features to interact with C variables,
and labels, and cooperate with the C compiler and optimizer for
register usage. Listing 8-5 is a simple example, where the core
algorithm for the toupper function is embedded inside the C program.

//
// C program to embed the Assembly Language
// toupper routine inline.
//

#include <stdio.h>
#include "pico/stdlib.h"

#define MAX_BUFFSIZE 255
void main()
{
 char *str = "This is a test.";
 char outBuf[MAX_BUFFSIZE];
 int len;

 stdio_init_all();

 while(1)
 {
 asm
 (
 "MOV R0, %1\n"
 "MOV R4, %2\n"
 "loop: LDRB R5, [R0]\n"
 "ADD R0, #1\n"
 "CMP R5, #'z'\n"
 "BGT cont\n"
 "CMP R5, #'a'\n"
 "BLT cont\n"
 "SUB R5, #('a'-'A')\n"
 "cont: STRB R5, [%2]\n"
 "ADD %2, #1\n"
 "CMP R5, #0\n"
 "BNE loop\n"
 "SUB R0, %2, R4\n"
 "MOV %0, R0\n"
 "MOV %2, R4"
 : "=r" (len)
 : "r" (str), "r" (outBuf)
 : "r4", "r5", "r0"
);

 printf("Before str: %s\n", str);
 printf("After str: %s\n", outBuf);
 printf("Str len = %d\n", len);
 }
}

Listing	8-5 Embedding our Assembly routine directly in C code

The asm statement allows Assembly Language code to be
embedded directly into C code. With this, an arbitrary mixture of C and
Assembly Language code can be written. The comments are stripped

out from the Assembly Language code, so the structure of the C and
Assembly Language is easier to read. The general form of the asm
statement is

asm asm-qualifiers (AssemblerTemplate
 : OutputOperands
 [: InputOperands]
 [: Clobbers]]
 [: GotoLabels])

The parameters are
AssemblerTemplate: A C string containing the Assembly code.
There are macro substitutions that start with % to let the C compiler
insert the inputs and outputs.
OutputOperands: A list of variables or registers returned from the
code. This is required, since it is expected that the routine does
something. In this case this is “=r”	(len) where the =r means an
output register and that it goes into the C variable len.
InputOperands: A list of input variables or registers used by the
routine, in this case “r” (str); “r” (outBuf) means two registers are
needed—one holds str and one holds outBuf. It is fortunate that C
string variables hold the address of the string, which is what is
needed in the register. These registers need to be preserved. The C
compiler expects them to be unchanged once the code exits and any
changes cause bugs.
Clobbers: A list of registers used and clobbered when the code runs,
in this case “r0”, “r4”, and “r5”.
GotoLabels: A list of C program labels that the code might want to
jump to. Usually, this is an error exit. If a C label is jumped to, warn
the compiler with a goto	asm-quali�ier.

The input and output operands can be labeled; this wasn’t done,
which means the compiler will assign names %0,	%1, … as used in the
Assembly Language code.

If the program is disassembled, notice that the C compiler avoids
using registers R0, R4, and R5 entirely, leaving them open to use. It
loads input registers from the variables on the stack, before the code

executes, and then copies a return value from the assigned register to
the variable len on the stack. It doesn’t give the same registers
originally used, but that isn’t a problem.

The input registers for instr and outstr can’t be modi�ied. For
outstr, since its value was saved to R4 for the length calculation, it can
be restored at the end. instr is moved into R0 and incremented there,
so that the input register is preserved.

Note If too many registers are speci�ied, then the inputs will be
received in high registers. How data is moved in and out of the lower
registers for processing needs to be managed. In the case of this
program, it is �ine when built for debug, but when built for nodebug,
%0 ends up in R8. This is why the �inal subtraction is to R0 and then
that is moved to %0.

This routine is straightforward and doesn’t have any ill side effects. If
the Assembly Language code is accessing hardware registers, add a
volatile keyword to the asm statement to make the C compiler more
conservative on any assumptions it makes about the code. Otherwise,
the C compiler doesn’t know hardware registers can change
independently from this code and the optimizer might remove
important code.

Summary
This chapter studied calling C functions from Assembly Language code.
The functions in the RP2040’s SDK were used to access the GPIO pins,
and how to deal with inline C functions was covered. Then the reverse
of calling the Assembly Language uppercase function from a C main
program was written. Next, the Assembly Language code was
embedded directly inline into C code.

Accessing the RP2040’s hardware indirectly through the SDK works
and is quick, but Assembly Language programmers like to access the
hardware directly, which is the topic of Chapter 9.

Exercises

1.
Create a C program to call the lowercase routine from Chapter 7,
Exercise 2, and print out some test cases.

2.

Take the lowercase routine from Chapter 7, Exercise 2, and embed
it in C code using an asm statement.

3.

Review the main routine in the .dis �ile for the embedded Assembly
Language. See how the main routine C code is converted to
Assembly Language, saves the registers, creates a stack frame, and
passes the addresses of instr and outstr.

4.
Modify the �lashing lights program to �lash the lights in different
patterns and vary the sleep times. Would this be easier if the
handling of each LED was moved into a function?

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_9

9.	How	to	Program	the	Built-In
Hardware
Stephen Smith1

Gibsons, BC, Canada

About the Pico-series Memory Map
About C Header Files
About the Raspberry Pi Pico Pins
How to Set a Pin Function
About Hardware Registers and Concurrency
About Programming the Pads
About RP2350 Pad Isolation
How to Initialize SIO
How to Turn a Pin On/Off
The Complete Program
Summary
Exercises

Chapter 8 interacted with external hardware devices connected to the
GPIO pins using the Pico-series SDK. This chapter looks at interacting
with the hardware directly. No new Assembly Language instructions
need to be learned, because access to the hardware is accomplished
with the memory load/store instructions previously studied. All
hardware access is via special memory addresses connected to
hardware devices, which respond based on the data written to them
rather than being connected to memory. Similarly, hardware devices
provide data from external sources when these addresses are read.

https://doi.org/10.1007/979-8-8688-2202-5_9

Before delving into individual memory addresses directly, a lay of
the land is needed. This chapter gives details about the Pico-series’
memory map.

About	the	Pico-series	Memory	Map
The RP2040/RP2350 contains several types of memory plus a large
selection of hardware memory-mapped registers:

Two banks of read-only memory
264kb or 520kb of read–write memory
Several large banks of memory-mapped hardware registers that
control the hardware or send/receive data to/from it

Table 9-1 is a high-level map of the main memory areas.

Table	9-1 High-level memory map of the RP2040/RP2350

Base
Address

Purpose

0x00000000 On-chip boot ROM

0x10000000 Off-chip �lash memory 16MB max

0x20000000 On-chip SRAM

0x40000000 Hardware registers for peripherals connected to the Advanced Peripheral Bus
(APB) Bridge

0x50000000 Hardware registers for devices connected to AHB

0xd0000000 Hardware registers connected directly to CPU such as SIO

0xe0000000 Arm Cortex-M-series processor hardware registers

When looking at the disassembly for one of the programs, all the
code addresses were in the 0x10000000 range, indicating the program
is running from the Pico’s ROM. This preserves the program between
power resets and is what the boot loader will run on power-up. The
data variables and the stack are in the 0x20000000 range, indicating
these aren’t stored between power resets, but are easy to write to. The
memory addresses from the other sets will be used shortly. This is how
the programs view the various hardware devices connected to the Pico-

series as special memory addresses. Next, a friendlier way to refer to
these memory addresses and registers is looked at.

About	C	Header	Files
It is poor programming to use magic numbers in code. Therefore, when
programming the SIO pins, don’t just plunk the number 0xd0000000 in
the code; instead, use a symbolic reference. These don't need to be
de�ined in the code using .EQU statements, as these are all de�ined in
the SDK. For instance, 0xd0000000 is de�ined in
src/rp2040/hardware_regs/include/hardware/regs/addressmap.
h with

#define SIO_BASE _u(0xd0000000)

The �ile addressmap.h is a C header �ile, and #de�ine is a C
preprocessor de�inition. The C preprocessor replaces SIO_BASE with
_u(0xd0000000) everywhere before compiling the source code. But the
code is written in Assembly Language. How can C header �iles be used?

This is why the source �iles are named with an uppercase .S
extension. The .S instructs the GNU Assembler to accept and process C
source �iles. If a lowercase .s extension is used, then the GNU Assembler
only accepts strict Assembly Language and spits out lots of error
messages. The C header �ile must be a simple set of de�ines to work; if it
de�ines C functions or structures, then the resulting code won’t compile.

The designers of the Pico-series SDK kept Assembly Language
programmers in mind when de�ining header �iles; header �iles can be
safely included for the various memory locations and values of all the
hundreds of hardware memory registers.

In this case, the SIO_BASE de�inition is used with

gpiobase: .word SIO_BASE @ base of the GPIO
registers

Note The name is SIO_BASE rather than GPIO_BASE to emphasize
programming through the single-cycle IO controller. How this helps
will be seen shortly.

These are the basics for programming access. Next, hardware devices
are connected to the outside world via the pins exposed on the boards,
speci�ically, to the Raspberry Pi Pico-series. For directions on how to
connect other manufacturers’ RP2040/RP2350 boards, refer to their
documentation.

About	the	Raspberry	Pi	Pico	Pins
Notice that in a pinout for the Raspberry Pi Pico’s external pins, each
pin is labeled with several functions. The various peripherals contained
in the RP2040/RP2350 are connected to the external pins through the
Advanced Peripheral Bus (APB). The APB has a programmable
multiplexor where each peripheral is speci�ied to connect to each pin.
Each pin can be programmed to do one of up to nine functions. Which
nine functions are possible for each pin is hard-coded in the hardware,
but much �lexibility is allowed in designing projects.

Note The ground and power pins are �ixed and not connected to
the APB.

For example, for GPIO pins 18, 19, and 20 that were connected to LEDs
in Chapter 8, Table 9-2 lists their other available functions.

Table	9-2 Functions for pins 18, 19, and 20

Pin F1 F2 F3 F4 F5 F6 F7 F8 F9

18 SPI0
SCK

UART0
CTS

I2C1
SDA

PWM1
A

SIO PIO0 PIO1 USB OVCUR
DET

19 SPI0 TX UART0
RTS

I2C1 SCL PWM1
B

SIO PIO0 PIO1 USB VBUS DET

20 SPI0 RX UART1 TX I2C0
SDA

PWM2
A

SIO PIO0 PIO1 CLOCK
GPIN0

USB VBUS EN

Table 9-3 lists the hardware functions with a quick description of
their purpose.

Table	9-3 Descriptions of hardware peripheral functions

Peripheral Description

SPI Serial Peripheral Interface. A synchronous serial communication interface
speci�ication used for short-distance communication.

UART Universal Asynchronous Receiver/Transmitter. For asynchronous serial
communication in which the transmission speeds are con�igurable.

I2C Inter-Integrated Circuit. A synchronous, multi-master, multi-slave, packet-
switched, single-ended, serial communication bus.

PWM Pulse-Width Modulation. A method of reducing the average power delivered by an
electrical signal, by turning on and off with a variable pulse width. It is commonly
used to control motors.

SIO Single-cycle IO. Software control of GPIO pins.

PIO Programmable IO. Connected to one of the PIO coprocessors.

CLOCK
GPIN

General-purpose clock inputs. Can be routed to several internal clock domains on
the RP2040/RP2350.

CLOCK
GPOUT

General-purpose clock outputs. Can drive several internal clocks onto external pins.

USB
OVCUR

USB power control signals to/from the internal USB controller.

To �lash the LEDs, �irst set the function of pins 18, 19, and 20 to SIO
so the program can control them.

How	to	Set	a	Pin	Function
To con�igure a pin as a general-purpose programmable pin, set a
hardware register to program the APB to route SIO functionality to the
external pin. The addresses of all the various banks of hardware
registers are de�ined in addressmap.h. The de�ine to use is

#define IO_BANK0_BASE _u(0x40014000)

For each pin, there are two 32-bit registers:
Status register
Control register

This means to access the register:
1.

Multiply the pin number by 8. Multiply by 8 by shifting the pin
number left by 3 bits.

2. Add that to the base to get the registers for the desired pin. This
gives the address of the set of registers for the target pin.

3.
Access the control register by providing the offset
IO_BANK0_GPIO0_CTRL_OFFSET, from io_bank0.h, to the STR
instruction.

4.
To con�igure the APB, write IO_BANK0_GPIO3_
CTRL_FUNCSEL_VALUE_SIO_3 (value 5) from io_bank0.h to the
control register.

The code to do this follows in Listing 9-1.

#include "hardware/regs/addressmap.h"
#include "hardware/regs/io_bank0.h"
 LDR R2, iobank0 @ address we
want
 LSL R0, #3 @ each GPIO
has 8 bytes of registers
 ADD R2, R0 @ add the
offset for the pin number
 MOV R1,
#IO_BANK0_GPIO3_CTRL_FUNCSEL_VALUE_SIO_3
 STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]
...
iobank0: .WORD IO_BANK0_BASE @ base of io
config registers

Listing	9-1 Code to set the GPIO pin to the SIO function, where the pin is provided in R0

Note iobank0 must be de�ined in the code section, not the data
section, so it can be loaded with one LDR instruction.

Programming this control register is easy since only a value is required
to be written to it. This isn’t true, in general, and the Pico-series
provides help to make programming hardware registers easier, which is
shown next.

About	Hardware	Registers	and	Concurrency
Most hardware registers are 32 bits, and each bit performs a different
function. For instance, the register to turn on and off the GPIO pins has
all the external pins in one register, and to set or clear pins, be careful
not to mess with other bits. The logic to do this resembles

LDR R1, [R2] @ R2 is the address of the
hardware register
ORR R1, R3 @ R3 has one bit set
STR R1, [R2] @ Write the value back to the
register with one bit altered

There are problems with this; besides taking three instructions and,
perhaps, being error-prone, the big problem is concurrency. The Pico-
series has two CPU cores, so separate functions could run on each CPU
core performing different operations on different SIO pins.

If one CPU does the LDR, but then the other CPU does the LDR
before the �irst CPU does the STR, then the second CPU will undo what
the �irst CPU does when it performs its STR instruction, as shown in
Figure 9-1.

Figure	9-1 Flow of two CPUs with a concurrency problem

The Pico-series solves this problem by having separate registers for
performing different operations on the registers. In the case of setting
or clearing SIO pins, there are two registers:
One	to	set	the	pins: To set one or more pins, use the set register.
Each bit is for a different pin. Just write a value to the set register,
where any one bit in the value will turn on that SIO pin. Any zero bits
written are ignored, and those pins are left alone.

One	to	clear	the	pins: To clear pins, there is a clear (CLR) register
where any 1 bit will clear a GPIO pin and again zeroes are ignored.

This scheme is the reason for the name SIO for single-cycle I/O,
since only one instruction is needed and thus one clock cycle sets or
clears an I/O pin. On some pins there is also an XOR register, which
only sets the value if the pin isn’t already set, perhaps saving the
hardware work. These registers are laid out in two patterns:
1.

For Raspberry-designed devices like SIO, they are in consecutive
registers, where each one is de�ined in a header �ile.

2.

For devices taken from an ARM chip design library, Raspberry
provides aliases to the ARM de�ined registers, which add SIO
functionality. These bits are de�ined in addressmap.h starting with
REG_ALIAS; an example of this is provided when con�iguring the
pin’s external pad.

After the function of the pins is programmed, the pads must be
initialized.

About	Programming	the	Pads
The APB is connected to the outside world with pads. Pads provide
electrical isolation and control voltage and current levels. Program
these to turn them on, for both input and output. In this chapter,
instructions for programming output are given, but it doesn’t hurt to
turn both on. Strangely enough, input is turned on with input enable;
however, turning off the output with output disable means only setting
the input enable bit to con�igure the pad, as follows in Listing 9-2.

 LDR R2, padsbank0
 LSL R3, R0, #2 @ pin * 4 for register
address
 ADD R2, R3 @ Actual set of
registers for pin
 MOV R1, #PADS_BANK0_GPIO0_IE_BITS
 LDR R4, setoffset

 ORR R2, R4
 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]
...
padsbank0: .word PADS_BANK0_BASE
setoffset: .word REG_ALIAS_SET_BITS

Listing	9-2 How to con�igure a pad

Notice how the address of padsbank0 is loaded, to add in the offset
for the GPIO pin desired; then ORR with the bit gives the alias to the set
single-cycle register.

About	RP2350	Pad	Isolation
The RP2350 introduced pad isolation, which isolates the pad
electrically when the CPU is changing power states. When initialized
the pads are electrically isolated from the outside world. When the pads
are con�igured, they need to have this isolation removed before they
can be used. To do this the isolation bit in the pad control register needs
to be cleared. This is done with the code in Listing 9-3.

#if HAS_PADS_BANK0_ISOLATION
@ Remove pad isolation now that the correct
peripheral is set
 LDR R2, padsbank0
 LSL R3, R0, #2 @ pin * 4 for
register address
 ADD R2, R3 @ Actual set of
registers for pin
 LDR R4, clearoffset
 ADD R2, R4
 LDR R1, PBGIB
 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]
#endif

Listing	9-3 Code to remove pad isolation

Notice the #if statement, which the SDK CMake system will de�ine
HAS_PADS_BANK0_ISOLATION for any board with pad isolation such as

the RP2350. Using this if allows the code to be complied and to work
for either the Pico 1 or Pico 2.

How	to	Initialize	SIO
In this next step, the SIO device is initialized, preparing the pin for
output and turning it off (in case it was previously turned on). There
are 26 pins exposed externally—pins 0–28 excluding 23 to 25. They can
each be referenced by a bit in a 32-bit register. Access that bit by
placing a one in a register and shifting it left by the pin number.

To initialize the SIO pin:
1.

Write one to the pin’s position in the output enable set register to
con�igure it for output.

2.

Write the same value to the output clear register to turn the pin off.
Listing 9-4 shows this process.

#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"
...
 MOV R3, #1
 LSL R3, R0 @ shift over to
pin position
 LDR R2, gpiobase @ address we want
 STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]
 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]
...
gpiobase: .WORD SIO_BASE @ base of the GPIO
registers

Listing	9-4 How to con�igure the SIO pin to a known state

How	to	Turn	a	Pin	On/Off
To turn on a pin is the same process as before, except now write it to
the SIO set register to turn on the current to drive the LED as shown in

Listing 9-5.

MOV R3, #1
LSL R3, R0 @ shift over to pin
position
LDR R2, gpiobase @ address we want
STR R3, [R2, #SIO_GPIO_OUT_SET_OFFSET]

Listing	9-5 Code to turn on a LED by turning on the SIO output register

Similarly, turn the LED off by doing the same thing to the SIO clear
register.

Note It takes only one instruction to access the SIO, adding
ef�iciency, simplifying programming, and eliminating concurrency
problems.

The	Complete	Program
Putting all the program together is shown in Listing 9-6. This program
uses the good programming practice of employing constants in the C
header �iles. The program demonstrates using hardware registers. It
doesn’t use the SDK to access the SIO pins; instead, it only uses the SDK
for the sleep_ms function.

@
@ Assembler program to flash three LEDs connected
to the
@ Raspberry Pi GPIO writing to the registers
directly.
@
@

#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"
#include "hardware/regs/io_bank0.h"
#include "hardware/regs/pads_bank0.h"

 .EQU LED_PIN1, 18
 .EQU LED_PIN2, 19
 .EQU LED_PIN3, 20

 .EQU FUNCSEL_VALUE_SIO, 5

 .EQU sleep_time, 200

.thumb_func

.global main @ Provide
program starting address

 .align 4 @ necessary
alignment
main:

@ Init each of the three pins and set them to
output
 MOV R0, #LED_PIN1
 BL gpioinit
 MOV R0, #LED_PIN2
 BL gpioinit
 MOV R0, #LED_PIN3
 BL gpioinit

loop:
@ Turn each pin on, sleep and then turn the pin
off
 MOV R0, #LED_PIN1
 BL gpio_on
 LDR R0, =sleep_time
 BL sleep_ms
 MOV R0, #LED_PIN1
 BL gpio_off
 MOV R0, #LED_PIN2
 BL gpio_on
 LDR R0, =sleep_time
 BL sleep_ms

 MOV R0, #LED_PIN2
 BL gpio_off
 MOV R0, #LED_PIN3
 BL gpio_on
 LDR R0, =sleep_time
 BL sleep_ms
 MOV R0, #LED_PIN3
 BL gpio_off

 B loop @ loop
forever

@ Initialize the GPIO to SIO. r0 = pin to init.
gpioinit:

@ Initialize the GPIO
 MOV R3, #1
 LSL R3, R0 @ shift
over to pin position
 LDR R2, gpiobase @ address
we want
 STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]
 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

@ Enable input and output for the pin
 LDR R2, padsbank0
 LSL R3, R0, #2 @ pin * 4
for register address
 ADD R2, R3 @ Actual
set of registers for pin
 MOV R1, #PADS_BANK0_GPIO0_IE_BITS
 LDR R4, setoffset
 ORR R2, R4
 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

@ Set the function number to SIO.
 MOV R4, R0

 LSL R4, #3 @ each GPIO
has 8 bytes of registers
 LDR R2, iobank0 @ address
we want
 ADD R2, R4 @ add the
offset for the pin number
 MOV R1, #FUNCSEL_VALUE_SIO
 STR R1, [R2,
#IO_BANK0_GPIO0_CTRL_OFFSET]
#if HAS_PADS_BANK0_ISOLATION
@ Remove pad isolation now that the correct
peripheral is set
 LDR R2, padsbank0
 LSL R3, R0, #2 @ pin * 4
for register address
 ADD R2, R3 @ Actual
set of registers for pin
 LDR R4, clearoffset
 ADD R2, R4
 LDR R1, PBGIB
 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]
#endif
 BX LR

@ Turn on a GPIO pin.
gpio_on:
 MOV R3, #1
 LSL R3, R0 @ shift
over to pin position
 LDR R2, gpiobase @ address
we want
 STR R3, [R2, #SIO_GPIO_OUT_SET_OFFSET]
 BX LR

@ Turn off a GPIO pin.
gpio_off:
 MOV R3, #1

 LSL R3, R0 @ shift
over to pin position
 LDR R2, gpiobase @
address we want
 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]
 BX LR

 .align 4 @
necessary alignment
gpiobase: .word SIO_BASE @ base
of the GPIO registers
iobank0: .word IO_BANK0_BASE @ base
of io config registers
padsbank0: .word PADS_BANK0_BASE
setoffset: .word REG_ALIAS_SET_BITS
clearoffset:.word REG_ALIAS_CLR_BITS
padenaboff: .word PADS_BANK0_GPIO0_OFFSET
PBGIB: .word PADS_BANK0_GPIO0_ISO_BITS

Listing	9-6 The complete program to �lash the LEDs writing to the hardware directly

The SDK gpio_init function defaults setting the SIO pin for input, so
gpio_set_dir needed to be called to set the pin for output. In this
example, the included gpioinit function sets the pin for output so the
extra function isn’t required.

Summary
This chapter studied how the memory in the Pico-series is organized,
where ROM, RAM, and the hardware registers are located. How to use
the C header �iles in the SDK to get symbolic references for the
hardware registers and their values was learned. How the internal
hardware devices are connected to external pads that we soldered pins
to was studied. The APB was programmed to connect pins and make
the SIO pins used active. The SIO registers were used to turn the LEDs
on and off. The chapter concluded with an Assembly Language version
of Chapter 8’s program that writes to the hardware directly rather than
using the SDK functions.

This method of accessing the hardware is called “bit banging,”
where one CPU bangs the bits in the hardware registers to do what is
wanted. This method is expensive on the ARM Cortex-M-series
processor. In Chapter 10, how to of�load this work to the Pico-series’
I/O coprocessors is studied.

Exercises
1.

What is the starting memory address for the hardware registers for
I2C number 0 I/O device? Which header �ile is looked in for useful
de�ines when working with this device?

2.
Why does the Raspberry Pi Pico-series have multiple functions on
each external pin? Why doesn’t the Pico-series just have more pins
so they can all be used at once?

3.
Try changing the program to �lash the LEDs in a different pattern.
Can a fourth and �ifth LED be added?

4.

To make sure how the program loads the hardware addresses is
understood, single step through the program to examine how
addresses are loaded step by step. Look at the disassembly �ile to
see what the code is assembled into.

5.
How would the program be structured to do other work, rather
than calling sleep_ms()?

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_10

10.	How	to	Initialize	and	Interact	with
Programmable	I/O
Stephen Smith1

Gibsons, BC, Canada

About the PIO Architecture
About the PIO Instructions
Flashing the LEDs with PIO
PIO Instruction Details and Examples
JMP
WAIT
IN
OUT
PUSH
PULL
MOV
IRQ
SET
About Controlling Timing
About the Clock Divider
About the Delay Operand
About Side-Set
More Con�igurable Options
Summary
Exercises

https://doi.org/10.1007/979-8-8688-2202-5_10

This chapter puts aside the Assembly Language instructions for the
ARM Cortex-M-series processor that have been studied and looks at a
new Assembly Language syntax quite different from ARM’s. The
RP2040 contains eight programmable I/O (PIO) processors that are
programmed as state machines with their own Assembly Language
instructions, whereas the RP2350 has twelve of these. There’s a tool in
the SDK, pioasm, which assembles these in a similar manner to the GNU
Assembler.

The RP2040 and RP2350 contain several specialized I/O hardware
components for handling various common hardware protocols like the
UART and USB. However, with DIY projects non-standard devices are
often encountered that require custom control of the GPIO pins.
Sometimes it’s possible to implement these protocols using the ARM
CPU in a manner as in Chapter 9, but the ARM CPU wasn’t designed for
this, and it takes all the ARM’s processing power if it’s even possible.

Raspberry’s solution to this are the PIO processors that of�load the
processing from the CPU and hopefully provide enough programming
power to accomplish most common jobs. Controlling I/O isn’t an easy
job, but it isn’t necessary to design custom hardware or add a second
RP2040 board to perform the I/O.

The good news is that there are only nine Assembly Language
instructions, and there are only thirty-two instruction memory slots
shared by four PIO processors. Each instruction executes in one clock
cycle and sets or reads a set of GPIO pins, meaning we can manage
protocols that operate up to 150MHz for the RP2350. This excludes
HDMI but encompasses most other things including VGA. The trick is
how to implement protocols in small compact programs that don’t stall
waiting for some external event.

Note The RP2350 is slightly faster than the RP2040 running at
150MHz rather than 120MHz. As a result, the sample programs �lash
the LEDs a bit faster on an RP2350 than on an RP2040, and the
sample calculations in this chapter are based on the RP2040, but can
easily be adapted to the RP2350.

Before diving into an example, the architecture of the PIO system is
looked at �irst.

About	the	PIO	Architecture
The PIO coprocessors are divided into banks of four—the RP2040 has
two banks and the RP2350 has three banks. Each bank of four shares
the same 32-instruction memory for program storage. Figure 10-1 is a
block diagram of one of the PIO coprocessors.

Figure	10-1 Block diagram of one PIO processor

Within each PIO there are
Two general-purpose 32-bit scratch registers
Two shift registers to assist in shifting bits into and out of the
processor
A four-word transmit FIFO (First-In-First-Out) to buffer data coming
from the ARM CPU
A four-word receive FIFO to buffer data being sent to the ARM CPU
A program counter that controls which instruction is being executed
A clock divider register that slows down PIO processing
The I/O mapping that maps the PIO’s output to physical GPIO pins

The control logic that executes the instructions
Each instruction is 16 bits in length and comprised of three parts:

1.
The operand is like the operands used from the ARM world.

2.
A side-set value set to the con�igured side-set pins. This means
every instruction can change the GPIO pins for fastest processing.

3.

A delay value that slows an instruction up to 31 clock cycles to help
program precise timing to match hardware protocol requirements.

Note Besides the delay value, the overall program can be slowed
by setting the clock divider register.

Next, the nine individual instructions are looked at.

About	the	PIO	Instructions
This section looks at the nine instructions and their operands. All these
instructions can have a side-set or delay value included, but for
simplicity these are looked at in the following sections:
1.

JMP condition address
2.

WAIT polarity source index
3.

IN source, bitcount
4.

OUT destination, bitcount
5.

PUSH if-full block
6.

PULL if-empty block
7.

MOV destination, operation source

8. IRQ set/wait irq_num _rel
9.

SET destination, value
Four of the instructions—IN, OUT, PUSH, and PULL—are concerned

with transferring data to and from the ARM CPU. There aren’t any
memory operations, and the arithmetic operations are limited. The JMP
instruction can decrement a counter, and the MOV instruction can
reverse the bits or perform a one’s complement as part of the move.

Before going into detail on these instructions, an example follows to
give a feel for how these instructions are used.

Flashing	the	LEDs	with	PIO
The previous programs �lashed three LEDs with the SDK and then
wrote directly to the Pico-series’ hardware registers, but now the PIO
coprocessor is used. The advantage of this method is that all the
processing happens on three PIOs and the ARM processor is left free to
do other work. First, the PIO Assembly Language code is put in a �ile
called blink.pio containing Listing 10-1.

;
; Program to blink a LED
;

.program blink
 pull block
 out y, 32
.wrap_target
 mov x, y
 set pins, 1 ; Turn LED on
lp1:
 jmp x-- lp1 ; Delay for (x+1) cycles, x is a
32 bit number
 mov x, y
 set pins, 0 ; Turn LED off
lp2:

 jmp x-- lp2 ; Delay for the same number of
cycles again
 mov x, y
lp3: ; Do it twice to wait for 2
other leds to blink
 jmp x-- lp3 ; Delay for the same number of
cycles again
.wrap ; Blink forever!

% c-sdk {
// this is a raw helper function for use by the
user which sets
// up the GPIO output, and configures the SM to
output on a
// particular pin

void blink_program_init(PIO pio, uint sm, uint
offset, uint pin) {
 pio_gpio_init(pio, pin);
 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1,
true);
 pio_sm_config c =
blink_program_get_default_config(offset);
 sm_config_set_set_pins(&c, pin, 1);
 pio_sm_init(pio, sm, offset, &c);
}
%}

Listing	10-1 PIO Assembly Language code to blink a LED

Here are a few notes about this �ile:
Comments start with a semicolon; anything after a semicolon is
ignored. C-style comments /* */ and // can also be used.
The program starts with a .program directive that gives the program
a name. This will be used in C variable names, so it must follow the
rules for a C variable.
The PC wraps back to 0 once it passes 31 giving it an in�inite loop for
free. However, there are control registers that can alter this

wraparound, namely, setting the end instruction and where to loop
to. The .wrap and .wrap_target directives de�ine this setting to give
an in�inite loop, saving the use of an extra JMP instruction.
Labels are like those in ARM Assembly Language, a name followed by
a colon. These are used as the targets for JMP instructions.
This �ile will be assembled into a C header (.h) �ile containing the
machine code 16-bit instructions in an array. As a consequence, C
code can be included in this �ile, where anything between % c-sdk {
and %} is put in the resulting header �ile along with a couple of other
generated helper functions.

The program inputs a 32-bit delay loop counter from the ARM
world and keeps that in the Y scratch register, and whenever it needs to
wait, it moves this to the X scratch register and then loops that many
times. The program turns on the LED, does the delay loop, and then
turns the LED off. It then performs the delay loop twice to let the other
two LEDs have their turn. Which pin the program controls is con�igured
from the ARM side. Here’s a quick overview of what each instruction
does:
1.

pull block: Pulls a 32-bit quantity from the host Tx FIFO into the
output shift register (OSR). The block operand says to wait for a
quantity.

2.
out y, 32: Shifts 32 bits from the OSR into the Y scratch register.

3.
mov x, y: Copies the contents of the Y scratch register to the X
scratch register.

4.

set pins, 1: Sets the pins con�igured for this PIO to 1. The pin to use
is con�igured by the C program.

5.

jmp x-- lp1: Jumps to lp1 if X is nonzero while decrementing the X
scratch register. The condition is based on the initial value of X.

6.

set pins, 0: Turns off the pins con�igured for this PIO.

Although the PIOs do all the work, a C (or ARM Assembly Language)
program must download the code to the PIOs, con�igure them, and send
the loop count in. This is done by the program blink.c containing
Listing 10-2.

/**
 * C Program to set the PIO in motion blinking the
LEDs
 */

#include <stdio.h>

#include "pico/stdlib.h"
#include "hardware/pio.h"
#include "hardware/clocks.h"
#include "blink.pio.h"

const uint LED_PIN1 = 18;
const uint LED_PIN2 = 19;
const uint LED_PIN3 = 20;

#define SLEEP_TIME 200

void blink_pin_forever(PIO pio, uint sm, uint
offset, uint pin, uint freq);

int main() {
 int i = 0;

 setup_default_uart();

 PIO pio = pio0;
 uint offset = pio_add_program(pio,
&blink_program);
 printf("Loaded program at %d\n", offset);

 blink_pin_forever(pio, 0, offset, LED_PIN1,
5);

 sleep_ms(SLEEP_TIME);
 blink_pin_forever(pio, 1, offset, LED_PIN2,
5);
 sleep_ms(SLEEP_TIME);
 blink_pin_forever(pio, 2, offset, LED_PIN3,
5);
 while(1)
 {
 i++;
 printf("Busy counting away i = %d\n", i);
 }
}

void blink_pin_forever(PIO pio, uint sm, uint
offset,
 uint pin, uint freq) {
 blink_program_init(pio, sm, offset, pin);
 pio_sm_set_enabled(pio, sm, true);

 printf("Blinking pin %d at %d Hz\n", pin,
freq);
 pio->txf[sm] = clock_get_hz(clk_sys) / freq;
}

Listing	10-2 The C code to call the SDK to download and con�igure the PIOs

The C program uses three PIO processors in PIO bank 0. It
downloads the program using the pio_add_program SDK function. The
program is contained in blink_pio.h as a 16-bit unsigned integer array
containing comments showing how each instruction was assembled:

static const uint16_t blink_program_instructions[]
= {
 0x80a0, // 0: pull block
 0x6040, // 1: out y, 32
 // .wrap_target
 0xa022, // 2: mov x, y
 0xe001, // 3: set pins, 1

 0x0044, // 4: jmp x--, 4
 0xa022, // 5: mov x, y
 0xe000, // 6: set pins, 0
 0x0047, // 7: jmp x--, 7
 0xa022, // 8: mov x, y
 0x0049, // 9: jmp x--, 9
 // .wrap
};

Next, the program starts each PIO, sleeping 200ms between so that
each one blinks at the correct time. Once the PIOs are set in motion, the
C program that runs on the ARM CPU goes into an in�inite loop printing
a count. This demonstrates that the ARM CPUs are both completely free
to do other work, while the three PIO processors �lash the LEDs.

To assemble the PIO code, add a line to the CMakeLists.txt �ile as
shown in Listing 10-3 where a pico_generate_pio_header statement is
added.

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)
project(test_project C CXX ASM)

set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

add_executable(pio_blink)

by default the header is generated into the
build dir
pico_generate_pio_header(pio_blink
${CMAKE_CURRENT_LIST_DIR}/blink.pio)

target_sources(pio_blink PRIVATE blink.c)

target_link_libraries(pio_blink PRIVATE
pico_stdlib hardware_pio)
pico_add_extra_outputs(pio_blink)

Listing	10-3 CMakeLists.txt �ile with the pico_generate_pio_header statement

The C code that calls SDK functions to control the PIOs is standard
and taken from the various PIO samples included in the SDK. Next, the
individual PIO instructions are looked at in more detail.

PIO	Instruction	Details	and	Examples
Each instruction is simple, but they have many variations. In this
section, examples of each instruction are given in its various forms.

JMP
The PIO doesn’t have a program status register, so the conditions are
based on various operations in the PIO. Here are all the incarnations of
the JMP instruction:

JMP label ; unconditional branch
JMP !X label ; jump if X is non zero
JMP X—label ; jump if X is nonzero while
decrementing X
JMP !Y label ; jump if Y is non zero
JMP Y—label ; jump if Y is non zero while
decrementing Y
JMP X!=Y label ; jump if X is not equal to Y
JMP pin label ; jump if pin is 1
JMP !OSRE label ; jump if the OSR has less
bits
 ; than the configured
threshold

Note The pin and !OSRE versions of jump require con�iguration
from SDK function sm_con�ig_set_jmp_pin or
sm_con�ig_set_out_shift.

WAIT
Wait can wait for a source to be 0 or 1 based on its �irst polarity
instruction. Here are examples with each source:

WAIT 0 gpio 17 ; wait for GPIO 17 to be 0
(actual GPIO pin)
WAIT 1 pin 1 ; wait for pin 1 to be 1
(mapped pins)
WAIT 1 irq 1 ; wait for IRQ 1 to be set
(then clears it)
WAIT 0 irq 2 rel ; wait for IRQ 2 to clear,
 ; IRQ is relative to other
PIOs.

Interrupts are discussed in Chapter 11. The other two forms allow
waiting on a physical GPIO with the gpio version or wait on a
con�igured pin with the pin version.

IN
When performing I/O, usually bits are received one by one. The
purpose of the input shift register (ISR) is to accumulate these bits one
by one, and when there’s a byte or word, those are sent to the ARM CPU.
The IN instruction moves bits from one of various sources into the ISR.
Here are all the forms of the IN instruction:

IN PINS, 1 ; Move 1 bit from the configured
pins to the ISR
IN X, 32 ; Copy the entire X register to
the ISR
IN Y, 16 ; Copy 16 bits from the Y register
to the ISR
IN NULL, 4 ; Copy 4 zero bits into the ISR
IN ISR, 4 ; Can be used to rotate 4 bits in
the ISR
IN OSR, 8 ; Copy 8 bits from the OSR to the
ISR

OUT
Out transfers bits from the output shift register into various
destinations inside the PIO. This data is received from the ARM CPU and
has already been moved from the transmit FIFO into the OSR. Here are
the forms of the OUT instruction:

OUT PINS, 1 ; set the pins from one bit in
the OSR
OUT X, 32 ; move 32 bits from the OSR to
the X register
OUT Y, 8 ; move one byte from the OSR
to
 ; the Y register
OUT NULL, 16 ; delete 16 bits from the OSR
OUT PINDIRS, 1 ; sets the pin direction for
the mapped pins
OUT PC, 5 ; jump to the alocation in the
 ; next 5 bits of the OSR
OUT ISR, 16 ; move 16 bits to the ISR
OUT EXEC, 16 ; execute the next 16 bits as
an instruction

OUT is the reverse of IN, except that it controls the direction of the
pins in a couple of interesting ways, including the host controlling the
PIO by copying data to the PC to perform a jump or using EXEC to
execute single instructions.

PUSH
PUSH pushes the contents of the ISR into the Rx FIFO as a single 32-bit
quantity and then sets the ISR to 0. PUSH blocks if the RxFIFO is full, or
if noblock is set, then PUSH continues to the next instruction without
doing anything. The ifful parameter tells PUSH not to do anything,
unless the ISR has reached a certain threshold of bits received.

PUSH block ; Push the ISR to the Rx
FIFO waiting

 ; for space to be
available
PUSH noblock ; Push the ISR to the Rx
FIFO if
 ; space available else
no-op
PUSH iffull block ; Push ISR to Rx FIFO if
enough bits
 ; received and space
available
PUSH iffull noblock ; Push ISR to Rx FIFO if
enough bits
 ; received and space
available, else no-op

Note There is an autopush con�iguration that pushes
automatically without requiring this instruction.

PULL
Pulls a 32-bit quantity from the Tx FIFO into the OSR. There are two
parameters used to determine whether to block if the Tx FIFO is empty
and what to do if the OSR isn’t empty enough as prescribed by a
con�igurable parameter. The non-blocking pull moves the X scratch
register into the OSR as a default value.

PULL block ; Pull 32-bits from the
Tx FIFO to the
 ; OSR blocking to wait
for data
PULL noblock ; Pull from Tx FIFO if
there is data
 ; else copy X into the
OSR
PULL ifempty block ; Blocking pull, but
only if OSR
 ; is sufficiently empty

PULL ifempty noblock ; Nonblocking pull, but
only if
 ; OSR is empty

Note There is an autopull con�iguration that’s often used to do this
automatically, saving an instruction.

MOV
Moves data from the source to the destination, with an option to either
reverse the bits or perform a one’s complement. The sources are

PINS
X
Y
NULL
STATUS
ISR
OSR

The destinations are
PINS
X
Y
EXEC
PC
ISR
OSR

Use ! or ~ for one’s complement and :: to reverse the bits. Some
examples are

MOV X, ~Y ; Move the one’s complement of
Y to X
MOV X, ::Y ; Move Y to X, reversing all
the bits
MOV X, STATUS ; Move the configured status to
X

MOV EXEC, X ; Execute the contents of X as
an instruction
MOV PC, Y ; Jump to the instruction
specified by Y

The STATUS value can be con�igured to serve a few purposes, like
indicating whether a FIFO is full or empty.

IRQ
IRQ sets or clears an interrupt either to the ARM CPU or to another PIO.

Interrupts 0–3 are routed to the ARM CPU.
Interrupts 4–7 are routed to the appropriate PIO in the same bank.

Chapter 11 talks about interrupts, but for now here are some
examples:

IRQ SET 2 ; set interrupt 2,
 ; won't wait for interrupt to
be handled
IRQ CLEAR 2 ; clear interrupt 2
IRQ WAIT 2 ; set interrupt 2 and
 ; wait for interrupt handler to
clear it
IRQ SET 2 REL ; interrupt number will be
adjusted
 ; by adding PIO number

SET
Sets an immediate value to a destination. The immediate value is
limited to 5 bits. The destinations are PINS, X, Y, and PINDIRS.

SET PINS, 1 ; Turn on the pins for this
PIO
SET PINDIRS, 0 ; Turn the pins into input
pins
SET X, 31 ; Set X to the value 31

About	Controlling	Timing
The program to �lash the LEDs generated three square waves, one for
each LED, with the one part offset differently for each LED. Most
computer communications use square waves to represent binary data,
the difference being that they operate at higher speeds than this
�lashing LEDs program. The hard part of implementing these protocols
usually comes down to meeting the precise timing requirements in the
electronics specs. The PIO processor has several features that help
provide precise timing for communications protocols. First, how to
control the speed the program executes at is looked at.

About	the	Clock	Divider
By default, each PIO instruction executes in one system clock cycle,
unless it must wait on an external event. The system clock runs at
125MHz or 150MHz, and the PIO will execute each instruction at this
speed. For most protocols this is too fast, and techniques to slow down
are required like delaying loops. The PIO has a con�iguration to slow
down how fast it operates via a clock divider. Based on a couple of
registers, a number is divided into the system clock, and the PIO will
operate at that speed. The valid values for the clock divider run from 1
to 65,536 in increments of 1/256. The easiest way to con�igure this is
via the Pico-series SDK function

static inline void sm_config_set_clkdiv(
 pio_sm_config *c, float div);

where the clock divider passes as a �loating-point number and the
SDK splits it apart to set the integer and fractional clock divider
hardware registers correctly.

To use the clock divider in the �lashing LED program, the clock
divider must be con�igured in the blink_program_init function from
blink.pio as shown in Listing 10-4.

void blink_program_init(PIO pio, uint sm, uint
offset,
 uint pin, float clkdiv) {

 pio_gpio_init(pio, pin);
 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1,
true);
 pio_sm_config c =
blink_program_get_default_config(offset);
 sm_config_set_clkdiv(&c, clkdiv);
 sm_config_set_set_pins(&c, pin, 1);
 pio_sm_init(pio, sm, offset, &c);
}

Listing	10-4 The blink_program_init function setting the clock divider

Then it’s called with

blink_program_init(pio, sm, offset, pin,
65536.0f);

Next, adjust the delay loops with

pio->txf[sm] = clock_get_hz(clk_sys) / freq /
65536;

Since the desired frequency is 5Hz, the delaying loop is reduced
from 125,000,000/5 = 25,000,000 to 125,000,000/5/65,536 = 381.

The clock divider affects the speed of everything running on the
PIO; however, there is �ine control of how long each individual
instruction executes.

About	the	Delay	Operand
Each PIO instruction has 5 bits set aside for delay and side-setting.
Side-set will be discussed shortly. In the meantime, all 5 bits are used
for delay. The delay is speci�ied in square brackets after the instruction
and with 5 bits has values of 0–31, for example:

MOV X, Y [31]

The MOV instruction is executed in one cycle and then waits 31
cycles before proceeding, making the instruction take 32 cycles in total.

When this is incorporated into the �lashing LEDs program, the delay
loops are eliminated entirely, as long as the LEDs �lash at 10Hz rather
than 5Hz. This is easily discernible to us poor slow humans. This is
combined with using the clock divider. The PIO Assembly Language
code is shown in Listing 10-5.

.program blink

.wrap_target
 set pins, 1 [31] ; Turn LED on
 mov x, x [31]
 mov x, x [31]
 mov x, x [31]
 mov x, x [31]
 mov x, x [31]
 set pins, 0 [31] ; Turn LED off
 mov x, x [31]
 mov x, x [31]
 mov x, x [31]
 mov x, x [31]
 mov x, x [31]
 set pins, 0 [31] ; Turn LED off
 mov x, x [31]
 mov x, x [31]
 mov x, x [31]
 mov x, x [31]
 mov x, x [31]
.wrap ; Blink forever!

Listing	10-5 PIO code to �lash the LEDs without a delay loop

Note We could also use the NOP instruction alias:

NOP [31]

This is an assembler alias to MOV	X,X for readability.
Each section has six instructions

One to set the pin

Five no-operations
to use up 6 × 32 = 192 clock cycles.
This is a waste of the small 32-instruction PIO memory, but it

demonstrates a timing control technique. Change the SLEEP_TIME as

#define SLEEP_TIME 100

Adjust the clock divider to

blink_program_init(pio, sm, offset, pin,
65104.17f);

See Exercise 1 for why this value needs to be changed. Slowing the
RP2040/RP2350 PIOs to something human readable is only barely
possible; however, at computer-to-computer speeds, the techniques in
this section are extremely powerful. Next, how to control the pins
without using SET instructions is examined.

About	Side-Set
Side-set lets each instruction set up to �ive pins while executing. This is
useful for controlling separate control pins or attaining maximum
speed by eliminating SET instructions. Side-set uses the same bits as
delay, so con�iguring bits for side-set reduces the number of bits
available for delay reducing the maximum delay time. By default, when
side-set is con�igured, every instruction in the program will do a side-
set, but the PIO can be con�igured to make side-set optional. The
downside is that this uses 1 bit of the 5 bits available to specify side-set
or delay. Listing 10-6 contains the PIO Assembly Language to use side-
set.

.program blink

.side_set 1

.wrap_target
 mov x, x side 1 [15] ; Turn LED on
 nop side 1 [15]
 mov x, x side 1 [15]

 mov x, x side 1 [15]
 mov x, x side 1 [15]
 mov x, x side 1 [15]
 mov x, x side 0 [15] ; Turn LED off
 mov x, x side 0 [15]
 mov x, x side 0 [15]
 mov x, x side 0 [15]
 mov x, x side 0 [15]
 mov x, x side 0 [15]
 mov x, x side 0 [15] ; Turn LED off
 mov x, x side 0 [15]
 mov x, x side 0 [15]
 mov x, x side 0 [15]
 mov x, x side 0 [15]
 mov x, x side 0 [15]
.wrap ; Blink forever!

Listing	10-6 PIO program to �lash the LEDs using side-set

This program �lashes twice as fast, since one of the delay bits is used
for side-set; therefore, the delays are reduced from 31 to 15. The
program is a collection of NOP instructions, where all the work is done
by side-set, delay, and con�iguration.

The .side_set assembler directive tells the assembler how many
side-set bits to con�igure and whether they are optional or not. This is
necessary for the assembler to provide meaningful error messages and
generate code correctly.

In the blink_program_init	routine, change the
sm_con�ig_set_set_pins function to

sm_config_set_sideset_pins(&c, pin);

Since it’s running twice as fast, change the de�inition of
SLEEP_TIME to 50.

Programming the PIOs is a combination of code and con�iguration.
We conclude with remaining con�iguration options.

More	Con�igurable	Options
This is a quick list of con�iguration options to be aware of, all of which
can be set via RP2040 SDK functions:
1.

Many PIO data functions only send or receive data; hence, they only
use one of the RX or TX FIFOs. By default, each FIFO is four words,
but they can be con�igured to one FIFO of eight words, making the
other 0.

2.
PUSH and PULL instructions can often be eliminated by
con�iguring autopush or autopull. These options will cause the
PUSH and/or PULL to happen when a con�igured data threshold is
reached.

3.
Each PIO learned so far only writes to one GPIO pin. However, it has
a 32-bit output register for writing to the pins, so all the pins are
written to at once. This is why the various instructions that read or
write the pins can process more than one bit.

4.
Interpreting data as an instruction has not yet been presented, but
the MOV	EXEC and OUT	EXEC functions can do this, allowing
interesting ARM-to-PIO communication techniques and
circumventing the 32-instruction limit.

5.
There are many PIO examples in the pico-examples	github. The
best way to create a new PIO program is to �ind something similar
in the examples and then modify it for the differences.

Summary
This was a whirlwind introduction to programming the PIO
coprocessors contained in the Pico-series. These are powerful
processors for of�loading communications functions from the two ARM
CPU cores. PIO functionality was introduced and viewed in an example
program to �lash the LEDs. Next, all the instructions were looked at in
detail, and then program timing was studied by modifying the �lashing

LEDs program to use all the various techniques. Then side-set was
looked at to control GPIO pins, and other useful con�iguration items
were reviewed.

Chapter 11 looks at how to catch interrupts from internal and
external devices and how to set interrupts from software.

Exercises
1.

The system clock for an RP2040 is 125,000,000Hz. Each group of
instructions executes in 6 * 32 = 192 clock cycles. Calculate the
system clock divider to get a �lash rate of 10Hz or ten times per
second. How does that change for a 150MHz RP2350?

2.
Using side-set, how fast can a square wave’s frequency cycle?

3.
Write a PIO program to change the pin direction as directed by the
ARM CPU. This would be like the program in Chapter 9. The ARM
still does a lot of work, but this is good practice at sending data or
instructions from the ARM to a PIO.

4.
In the �irst example program in this chapter, remove the SET
instruction by placing side-set on the JMP instructions.

5.

The gdb	debugger doesn’t know about the PIO processors, and
there isn’t a printf statement for the PIOs. What are some possible
techniques to debug a PIO program? Think about sending values to
the ARM CPU for printing.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_11

11.	How	to	Set	and	Catch	Interrupts
Stephen Smith1

Gibsons, BC, Canada

Overview of the Pico-series Interrupts
About the RP2040 versus the RP2350
About the Pico-series’ Interrupts
About the Interrupt Vector Table
About Saving Processor State
About Interrupt Priorities
Flashing LEDs with Timer Interrupts
About the RP2040 Alarm Timer
Setting the Interrupt Handler and Enabling IRQ0
The Complete Program
About the SVCall Interrupt
Using the SDK
Summary
Exercises

All the various iterations of the �lashing LEDs program had one thing in
common; they were one large loop using different methods to control
the timing of the �lashing. If this was part of a larger program that did
other tasks, such as driving a robot, then putting in hooks everywhere
to check if the LEDs need processing is annoying and can easily lead to
bugs.

Another approach is to set a timer interrupt; here, a timer is
programmed, so when it goes off it interrupts the program to process
the LEDs. This way a loop isn’t needed, nor is the handling of the LEDs

https://doi.org/10.1007/979-8-8688-2202-5_11

integrated into other parts of a larger program. This chapter looks at
interrupts on the Pico-series, how they work, and how to put them to
use.

In general, when handling I/O, data is often received randomly, and
just a noti�ication is needed when it is there to process. Interrupts
provide a great way to do this. The ARM Cortex-M-series has powerful
interrupt support that is well worth looking at. Before getting into the
details, here is an overview of the Pico-series’ interrupt mechanisms.

Overview	of	the	Pico-series	Interrupts
The ARM Cortex-M0+ powering the RP2040 supports 32 separate
interrupt sources of which 26 are implemented, leaving 6 unused. The
ARM Cortex-M33 powering the RP2350 supports 52 interrupts of
which 46 are connected. Each of these interrupt sources wires an
interrupt source, whether an internal or external device, to the Nested
Vector Interrupt Controller (NVIC). The NVIC knows the priority of
each interrupt and decides if it needs to interrupt the CPU. When it
interrupts the CPU, it saves the state of the running program and jumps
to an interrupt handler de�ined in the Interrupt Vector Table (IVT)
located within memory. When the interrupt handler �inishes processing
the interrupt, it returns, and the CPU restores the state of the running
program letting it continue executing. Figure 11-1 diagrams this
process.

Figure	11-1 Overview of the interrupt calling process

With this overview in mind, the following sections dig into the
various components in more detail starting with the list of interrupts.

About	the	RP2040	versus	the	RP2350
The RP2350 is based on the ARM Cortex-M33, whereas the RP2040 is
based on the older ARM Cortex-M0+. The M33 supports more
interrupts than the M0+, and consequently the RP2350 utilizes more
interrupts and external devices. This section lists the values for the
M33, but the �inal full program contains conditional compiles to work
with either an RP2040 or RP2350. In the SDK if the board is a Pico 2,
then the header �ile m33.h must be used, whereas if the board is a Pico
1, then m0plus.h must be included. Some of the de�ines in these �iles
contain M33 or M0PLUS and must be conditionally compiled if both
boards are supported.

Further, because the M33 now supports more than 32 interrupts,
additional banks of hardware registers are required to control them;
therefore, the constants contain 0 or 1 depending upon which bank
needs to be used.

About	the	Pico-series’	Interrupts
There are two sources of interrupts, those generated from within the
CPU and those generated by devices external to the ARM CPU. Table 11-
1 lists the ARM CPU internal interrupts.

Table	11-1 The ARM’s internal interrupts

Number IRQ Priority Source Comment

1 –15 –3 Reset Triggered at power on or reset

2 –14 –2 NMI Non-maskable interrupt

3 –13 –1 Hard fault Triggered by non-recoverable hardware failures

4 –12 0 MemManage Memory manager fault

5 –11 0 BusFault Memory errors on the bus

6 –10 0 UsageFault Usage error like unde�ined instruction

11 –5 0 SVCall Triggered by the SVC instruction

12 –4 0 DebugMon Debugger triggered

14 –2 0 PendSV Triggered by the SVCall handler

15 –1 0 Systick ARM system 24-bit clock tick

External interrupts are wired up to the CPU starting at IRQ0 but
starting at exception 16. Both the IRQ number and exception number
are used in various situations. In Table 11-1, the IRQs are negative, to
show their relative place to the external interrupts. Exceptions 7–10
and 13 are unused and reserved for future use. This table is for the
RP2350; some of these are not present in the RP2040. The NMI
interrupt is called when there is a fault in an interrupt handler routine,
which is considered more serious than a fault happening in regular
code. Table 11-2 lists some of the interrupts wired up to the ARM CPU
inside the RP2350 SoC.

Table	11-2 A selection of the RP2350’s interrupts and their priority

Number IRQ Priority Source CommentNumber IRQ Priority Source Comment

16–19 0–3 2 Timer 0 Alarm 0

20–23 4–7 2 Timer 1 Alarm 1

24–25 8–9 2 PWM Interrupt when a slice is complete

26–29 10–13 2 DMA Direct Memory Access

30 14 2 USB Data received

31–36 15–20 2 PIO Programmable I/O

37–38 21–22 2 GPIO One for each bank

39–40 23–24 2 QSPI External �lash memory

41–45 25–29 2 SIO

46 30 2 Clocks

47–48 31–32 2 SPI Data received, data sent, buffer overrun

49–50 33–34 2 UART 11 possible reasons

51 35 2 ADC FIFO reached threshold full

52–53 36–37 2 I2C Data received or sent

Next, how the Pico-series assigns an interrupt handler for each of
these is described.

About	the	Interrupt	Vector	Table
When the Pico-series powers up, the IVT is located at address
0x00000000; however, the SDK’s power-up routines move it to SRAM,
by setting a number of hardware registers associated with the ARM
Cortex-M-series interrupt con�iguration. This table is a list of memory
addresses, one for each interrupt. When an interrupt occurs, the ARM
processor jumps to the address stored for that interrupt.

The IVT contains an initial stack pointer (SP) to use after a reset
interrupt or on power-up and then the addresses of the handlers for
the ARM internal interrupts, followed by the handlers for the connected
devices.

Note For the ARM interrupts, the reserved interrupts still use a
table spot, even though they aren’t used.

Figure 11-2 shows the format of the IVT.

Figure	11-2 Format of the Interrupt Vector Table

The easiest way to access the IVT is to read the hardware register
where it’s con�igured. PPB_BASE is de�ined for the memory address of
the start of the ARM Cortex-M-series’ hardware registers, and then
M33_VTOR_OFFSET de�ined in m33.h is the offset to the IVT.

The value of M33_VTOR_OFFSET is too large to �it in an immediate
operand, so it needs to be loaded from memory; then add these two
numbers together to get the address of the hardware register
containing the address of the IVT. The code snippet below shows this
and loads the address of the IVT into R1:

#include "hardware/regs/addressmap.h"
#include "hardware/regs/m33.h"
...
 LDR R2, ppbbase
 LDR R1, vtoroffset
 ADD R2, R1
 LDR R1, [R2]
...
ppbbase: .word PPB_BASE
vtoroffset: .word M33_VTOR_OFFSET

Place the address of the interrupt handler into the correct offset
within this table. When the Pico-series jumps to an interrupt handler, it
must �irst save the state of the running program.

About	Saving	Processor	State
The state information of the processor is stored to the stack in a stack
frame, whose contents are shown in Figure 11-3.

Figure	11-3 Processor’s saved state while interrupt handler runs

In Chapter 7, the whole saving state was half in the called routine
and half in the calling function. In this case of interrupts, the processor
does the work for the calling routine. This stack frame is eight words in
length and does not store registers R4–R11, so if they’re needed save
and restore them in the handler routine. Since an interrupt can happen
between any two instructions, the CPSR must be saved since the
interrupt could happen between the instruction that sets the CPSR and
then the instruction that acts on the CPSR.

The overhead, or minimum time an interrupt handler can take, is
the time to save these eight words to the stack and then restore them.
The time depends upon whether they are cached or not. This sets a
hard limit on how fast the Pico-series processes external data via the
interrupt mechanism. Interrupts have a priority, and a higher-priority

interrupt interrupts a lower-priority interrupt handler's routine,
creating another stack frame.

About	Interrupt	Priorities
Each interrupt has a priority. All the externally connected interrupts
can have four possible priorities from 0, 1, 2, and 3. With interrupts the
lower the number, the higher their priority is, so 0 has a higher priority
than 3. By default, all these interrupts are set to 2, but can be changed
via one of the ARM hardware con�iguration registers.

The interrupts nest, where if a higher-priority interrupt occurs
while a lower-priority interrupt handler executes, then the processor
interrupts the handler, creates a new stack frame, executes the handler
for the higher-priority interrupt, removes its stack frame, and
continues executing the lower-priority handler.

The ARM Cortex-M-series implements optimizations to reduce the
creation of stack frames:
1.

If a higher-priority interrupt arrives while the CPU is creating the
stack frame, then the CPU �inishes creating the stack frame and lets
the higher-priority interrupt use it, since the setup is the same for
both. The NVIC remembers the original interrupt and runs it when
the higher-priority interrupt �inishes.

2.
If a lower- or same-priority interrupt occurs while another
interrupt runs, the processor won’t tear down and recreate a stack
frame; it passes control immediately to the next handler when the
current handler �inishes. This optimization applies to case 1 as
well.

That completes the theoretical part of this chapter. Next, how this all
�its together in a real application is looked at.

Flashing	LEDs	with	Timer	Interrupts
There are many techniques to �lash three LEDs. Now this is done using
the Pico-series’ built-in timer via an interrupt. In this example, one of
the Pico-series’ alarms is set to interrupt the program every 200ms to

switch to the next LED. The timer interrupt handler is implemented as a
state machine, which increments the state, turns on or off each LED
based on the state, and then programs the next timer interrupt. Listing
11-1 is the pseudo-code for the alarm interrupt handler.

Clear the interrupt
state = state + 1
switch (state)
 Case 1:
 Turn on led 1, turn off leds 2 & 3
 Case 2:
 Turn on LED 2, turn off LEDs 1 & 3
 Case else:
 Turn on LED 3, turn off LEDs 1 & 2
 Set state = 0
Set the timer to go off in another 200ms

Listing	11-1 Pseudo-code for the alarm interrupt handler

The state variable is a global variable located in SRAM and
initialized to zero by the program. This example uses Assembly
Language routines to manipulate the SIO hardware registers directly.

The only SDK functions used are to print a count in the program's
main loop, showing how the main part of the program can be written
without worrying about the LEDs, which are entirely controlled by the
interrupt handler. Before presenting the entire program, a bit of detail
on the Pico-series’ alarm timer follows.

About	the	RP2040	Alarm	Timer
The alarm timer is a 64-bit number that is incremented every
microsecond. An alarm is programmed by setting a hardware register
with a 32-bit number, and when the lower-order 32 bits of the timer
match, an interrupt is �ired. So, in the code, the timer’s count is read,
200,000 (200ms in microseconds) is added, and then the alarm is set.

The locations of the hardware registers are in timer.h, with the base
address in addressmap.h. Below is the code to do this with the
assumption R0 contains 200,000:

#include "hardware/regs/addressmap.h"
#include "hardware/regs/timer.h"
...
 LDR R2, timerbase
 LDR R1, [R2, #TIMER_TIMELR_OFFSET]
 ADD R1, R0 @ R0 = 200,000
 STR R1, [R2, #TIMER_ALARM0_OFFSET]
...
timerbase: .word TIMER_BASE

When a timer interrupt is received, the interrupt must be cleared to
acknowledge it was received, with

LDR R2, timerbase
MOV R1, #1 @ for alarm 0
STR R1, [R2, #TIMER_INTR_OFFSET]

After the new timer value is set, it’s enabled with

LDR R2, timerbase
MOV R1, #1 @ for alarm 0
STR R1, [R2, #TIMER_INTE_OFFSET]

Besides programming the timers, when the program is initialized, it
needs to set the interrupt handler and enable the timer IRQ with the
NVIC.

Setting	the	Interrupt	Handler	and	Enabling	IRQ0
Previously, how to get the location of the IVT was learned, and in this
program the interrupt handler is con�igured into it. Assuming the
location of the IVT is in R2, then the interrupt handler is set with

.EQU alarm0_isr_offset, 0x40
 MOV R2, #alarm0_isr_offset @ slot for alarm
0
 ADD R2, R1 @ add the offset
to the IVT

 LDR R0, =alarm_isr @ load address of
our handler
 STR R0, [R2] @ save our
routine to the IVT

By default, most interrupts are disabled. After all why execute all
these interrupt handlers if no one is using them? At program startup
IRQ0 is enabled to the NVIC with

 MOV R0, #1 @ alarm 0 is IRQ0 (bit 0)
 LDR R2, ppbbase
 LDR R1, clearint
 ADD R1, R2
 STR R0, [R1]
 LDR R1, setint
 ADD R1, R2
 STR R0, [R1]
...
clearint: .word M33_NVIC_ICPR0_OFFSET
setint: .word M33_NVIC_ISER0_OFFSET

In this case, follow the SDK recommendation to clear the interrupt,
and then enable it.

The	Complete	Program
Listing 11-2 contains the complete source code for this program and
should be put in a �ile called timeint.S.

@
@ Assembler program to flash three LEDs connected
to the
@ Raspberry Pico-series GPIO using timer
interrupts to
@ trigger the next LED to flash.
@

#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"

#include "hardware/regs/timer.h"
#include "hardware/regs/io_bank0.h"
#include "hardware/regs/pads_bank0.h"
#if defined(PICO_RP2040)
#include "hardware/regs/m0plus.h"
#else
#include "hardware/regs/m33.h"
#endif

 .EQU LED_PIN1, 18
 .EQU LED_PIN2, 19
 .EQU LED_PIN3, 20

 .EQU FUNCSEL_VALUE_SIO, 5

 .EQU alarm0_isr_offset, 0x40

.thumb_func @ Needed since
SDK uses BX to call us
.global main @ Provide
program starting address

 .align 4 @ necessary
alignment
main:
 BL stdio_init_all @ initialize
uart or usb

@ Init each of the three pins and set them to
output
 MOV R0, #LED_PIN1
 BL gpioinit
 MOV R0, #LED_PIN2
 BL gpioinit
 MOV R0, #LED_PIN3
 BL gpioinit

 BL set_alarm0_isr @ set the
interrupt handler
 LDR R0, alarmtime @ load the
time to sleep
 BL set_alarm0 @ set the
first alarm

 MOV R7, #0 @ counter
loop:
 LDR R0, =printstr @ string to
print
 MOV R1, R7 @ counter
 BL printf @ print
counter
 MOV R0, #1 @ add 1
 ADD R7, R0 @ to counter

 B loop @ loop forever

set_alarm0:
 @ Set's the next alarm on alarm 0
 @ R0 is the length of the alarm

 @ Enable timer 0 interrupt
 LDR R2, timerbase
 MOV R1, #1 @ for
alarm 0
 STR R1, [R2, #TIMER_INTE_OFFSET]

 @ Set alarm
 LDR R1, [R2, #TIMER_TIMELR_OFFSET]
 ADD R1, R0
 STR R1, [R2, #TIMER_ALARM0_OFFSET]

 BX LR

.thumb_func @
necessary for interrupt handlers

@ Alarm 0 interrupt handler and state machine.
alarm_isr:
 PUSH {LR} @ calls
other routines
 @ Clear the interrupt
 LDR R2, timerbase
 MOV R1, #1 @ for
alarm 0
 STR R1, [R2, #TIMER_INTR_OFFSET]

 @ Disable/enable LEDs based on state
 LDR R2, =state @ load
address of state
 LDR R3, [R2] @ load
value of state
 MOV R0, #1
 ADD R3, R0 @
increment state
 STR R3, [R2] @ save
state
step1: MOV R1, #1 @ case
state == 1
 CMP R3, R1
 BNE step2 @ not == 1
check next
 MOV R0, #LED_PIN1
 BL gpio_on
 MOV R0, #LED_PIN2
 BL gpio_off
 MOV R0, #LED_PIN3
 BL gpio_off
 B finish
step2: MOV R1, #2 @ case
state == 2
 CMP R3, R1
 BNE step3 @ not == 2
then case else

 MOV R0, #LED_PIN1
 BL gpio_off
 MOV R0, #LED_PIN2
 BL gpio_on
 MOV R0, #LED_PIN3
 BL gpio_off
 B finish
step3: MOV R0, #LED_PIN1 @ case
else
 BL gpio_off
 MOV R0, #LED_PIN2
 BL gpio_off
 MOV R0, #LED_PIN3
 BL gpio_on
 MOV R3, #0 @ set
state back to zero
 LDR R2, =state @ load
address of state
 STR R3, [R2] @ save
state == 0

finish:LDR R0, alarmtime @ sleep
time
 BL set_alarm0 @ set next
alarm
 POP {PC} @ return
from interrupt

set_alarm0_isr:
 @ Set IRQ Handler to our routine
 LDR R2, ppbbase
 LDR R1, vtoroffset
 ADD R2, R1
 LDR R1, [R2]
 MOV R2, #alarm0_isr_offset @ slot
for alarm 0
 ADD R2, R1

 LDR R0, =alarm_isr
 STR R0, [R2]

 @ Enable alarm 0 IRQ (clear then set)
 MOV R0, #1 @ alarm 0
is IRQ0
 LDR R2, ppbbase
 LDR R1, clearint
 ADD R1, R2
 STR R0, [R1]
 LDR R1, setint
 ADD R1, R2
 STR R0, [R1]

 BX LR

@ Initialize the GPIO to SIO. r0 = pin to init.
gpioinit:
@ Initialize the GPIO
 MOV R3, #1
 LSL R3, R0 @ shift
over to pin position
 LDR R2, gpiobase @ address
we want
 STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]
 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

@ Enable input and output for the pin
 LDR R2, padsbank0
 LSL R3, R0, #2 @ pin * 4
for register address
 ADD R2, R3 @ Actual
set of registers for pin
 MOV R1, #PADS_BANK0_GPIO0_IE_BITS
 LDR R4, setoffset
 ORR R2, R4
 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

@ Set the function number to SIO.
 MOV R4, R0
 LSL R4, #3 @ each
GPIO has 8 bytes of registers
 LDR R2, iobank0 @ address
we want
 ADD R2, R4 @ add the
offset for the pin number
 MOV R1, #FUNCSEL_VALUE_SIO
 STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]
#if HAS_PADS_BANK0_ISOLATION
@ Remove pad isolation now that the correct
peripheral is set
 LDR R2, padsbank0
 LSL R3, R0, #2 @ pin * 4
for register address
 ADD R2, R3 @ Actual
set of registers for pin
 LDR R4, clearoffset
 ADD R2, R4
 LDR R1, PBGIB
 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]
#endif
 BX LR

@ Turn on a GPIO pin.
gpio_on:
 MOV R3, #1
 LSL R3, R0 @ shift
over to pin position
 LDR R2, gpiobase @ address
we want
 STR R3, [R2, #SIO_GPIO_OUT_SET_OFFSET]
 BX LR

@ Turn off a GPIO pin.
gpio_off:

 MOV R3, #1
 LSL R3, R0 @ shift
over to pin position
 LDR R2, gpiobase @ address
we want
 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]
 BX LR

 .align 4 @
necessary alignment
gpiobase: .word SIO_BASE @ base of
the GPIO registers
iobank0: .word IO_BANK0_BASE @ base of
io config registers
padsbank0: .word PADS_BANK0_BASE
setoffset: .word REG_ALIAS_SET_BITS
clearoffset: .word REG_ALIAS_CLR_BITS
ppbbase: .word PPB_BASE
#if defined(PICO_RP2040)
timerbase: .word TIMER_BASE
vtoroffset: .word M0PLUS_VTOR_OFFSET
clearint: .word M0PLUS_NVIC_ICPR_OFFSET
setint: .word M0PLUS_NVIC_ISER_OFFSET
#else
timerbase: .word TIMER0_BASE
vtoroffset: .word M33_VTOR_OFFSET
clearint: .word M33_NVIC_ICPR0_OFFSET
setint: .word M33_NVIC_ISER0_OFFSET
PBGIB: .word PADS_BANK0_GPIO0_ISO_BITS
#endif
alarmtime: .word 200000
printstr: .asciz "Couting %d\n"

.data
state: .word 0

Listing	11-2 Flashing the LEDs via timer interrupts

There’s nothing special about the CMakeLists.txt �ile; it just needs to
compile timeint.S. Notice that everything was done using just registers
R0–R3, so no other registers needed to be saved.

Note The de�ined(PICO_RP2040) is tested in the conditional
compiles to determine which include �iles and constants to use.

That example used hardware interrupts. Now a note on software
interrupts.

About	the	SVCall	Interrupt
The SVCall interrupt is a useful mechanism to implement operating
system calls or to have the ability to call a routine without needing to
link to it at compile time. This interrupt is triggered when a program
executes the Supervisor Call (SVC) instruction:

SVC parameter

The parameter is an 8-bit immediate operand that allows 256
possible values. Linux uses this to call the operating system where the
parameter is the Linux function number, and then the registers contain
the parameters to that function where their exact values depend on
which function it is.

Using	the	SDK
The SDK wasn’t used so far, to provide a bare metal explanation of the
interrupt process as is typically used by Assembly Language
programmers. However, the SDK contains multiple useful functions for
managing interrupts and for devices like the timer. It has support for
higher-level functionality. It is worth reviewing what the SDK contains
to save some coding. Further, the complete source code for the SDK is
posted to GitHub, which provides a wealth of sample code.

Summary

Interrupts are a mechanism where the running program can be
interrupted at any point, and control is passed to a con�igured interrupt
handler. Interrupts typically originate from hardware devices when
new data arrives or needs attention. In this chapter the architecture of
the ARM Cortex-M-series interrupt system was studied, including how
to set an interrupt handler and enable and con�igure interrupts, as well
as how state is saved and how interrupts can be interrupted in a nested
manner.

The Pico-series’ timer device was looked at next in detail including
how to use it to set alarms to interrupt the program on a regular basis.
A complete program was examined to demonstrate all these concepts in
action, again while �lashing the three LEDs. Then software-triggered
service interrupts were shown, and the Pico-series SDK support was
mentioned.

So far only the addition and subtraction of integers were covered.
Chapter 12 covers a much broader set of mathematical operations.

Exercises
1.

Most software engineers work hard to make their interrupt
handlers operate as fast as possible, leading many to be written in
Assembly Language. Why do they do this? Does it matter how long
an interrupt handler takes to execute and why?

2.
Debugging the program shows that the IVT is at the start of SRAM
at memory location 0x20000000. Why not hard-code that in the
program and save a couple of instructions?

3.
Modify the state machine in the sample program to create a pattern
where two LEDs are lit at the same time.

4.

Implement the sample program in C using the SDK.
5.

Create a small Assembly Language program to use the SVC
instruction and handle the interrupt, printing something to know
that it was triggered.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_12

12.	Multiplication,	Division,	and
Floating	Point
Stephen Smith1

Gibsons, BC, Canada

Multiplication
Division
Interpolation
Adding an Array of Integers
Interpolating Between Numbers
Floating Point
De�ining Floating-Point Numbers
About Floating-Point Registers
Loading and Saving FPU Registers
Basic Arithmetic
Sample Floating-Point Program
Some Notes on C and printf
Summary
Exercises

In this chapter, we return to using mathematics. We’ve already covered
addition, subtraction, and a collection of bit operations on our 32-bit
registers. How to perform more advanced mathematical functions is
now explained.

Modern microcontrollers are quite sophisticated devices, but to
keep costs low, they have far fewer transistors than full desktop CPUs
like the ARM A-series. As a result, they lack the full �loating-point units

https://doi.org/10.1007/979-8-8688-2202-5_12

and sophisticated mathematics that their big brothers support. When a
vendor such as Raspberry licenses an ARM M-series CPU, they can
select from a number of options to include or exclude depending on
their price target and desired transistor count.

The built-in and optional mathematical components included with
the ARM Cortex-M0+ included in the RP2040 and the M33 included in
the RP2350 are quite different. Table 12-1 summarizes these
differences.

Table	12-1 Comparison of the mathematical capabilities of the RP2040 versus
RP2350

Operation RP2040 RP2350

Integer	multiplication Included Included

Integer	division Coprocessor Included

DSP	(Digital	Signal	Processor)-type	function Coprocessor Coprocessor

Single-precision	�loating	point Boot-ROM library FPU

Double-precision	�loating	point GCC library Partial-FPU

This chapter covers the abilities of the RP2350, since it makes sense
to use this processor if these are needed. For instance, to perform a
single-precision �loating-point instruction using the library in the boot
ROM typically takes 70 cycles, whereas the FPU in the RP2350 can
perform this in two to three cycles.

Multiplication
Integer 32-bit multiplication is built into the ARM Cortex-M-series, and
the instruction set includes the MUL instruction:

MUL Rd, Rn

This instruction calculates Rd	=	Rd	*	Rn and executes in one clock
cycle. Multiplying two 32-bit integers results in a 64-bit integer;
however, this instruction simply discards or doesn’t calculate the upper
32 bits. This works �ine for smaller integers and equally well for signed

or unsigned integers (Exercise 2), since the difference is in the
discarded upper 32 bits. Here are a few examples:

MOV R2, #25
MOV R3, #5
MUL R2, R3 @ R2 = 125
NEG R3, R3 @ R3 = -5
MUL R2, R3 @ R2 = -625

Multiplication is straightforward within its limitations. Now look at
division.

Division
The ARM Cortex-M0+ doesn’t have division instructions; however, the
RP2040 adds a division coprocessor that performs a 32-bit integer
division in eight clock cycles. The M33 has division built in, so the
RP2350 has a division instruction. The division instructions are

SDIV {Rd}, Rn, Rm
UDIV {Rd}, Rn, Rm

where
Rd: Is the destination register
Rn: Is the register holding the numerator
Rm: Is the register holding the denominator

There are a few problems or technical notes on these instructions:
There is no “S” option of this instruction, as it doesn’t set the CPSR at
all.
Dividing by 0 should throw an exception; with these instructions it
returns 0, which can be very misleading.
The instruction only returns the quotient, not the remainder. Many
algorithms require the remainder, and this must be calculated as
remainder = numerator – (quotient * denominator).

The code to execute the division instructions is simple as follows:

MOV R2, #100

MOV R3, #4
SDIV R4, R2, R3
UDIV R4, R2, R3

Interpolation
Both the RP2040 and RP2350 have two interpolator coprocessors for
each ARM CPU core. These interpolators assist in several common
algorithms used in audio and video processing. They can also assist in
processing data being received into one of the Pico-series I/O devices.
Consider the interpolators as a poor man’s Digital Signal Processor
(DSP). Many cell phone SoCs contain DSP processing blocks; however,
at this point Raspberry can’t include a full DSP in their four-dollar chip.

DSPs typically perform full �loating-point computations, contain
instructions that are helpful for processing input signals, and have their
own instruction sets. The Pico-series interpolators can assist with some
of the same algorithms as full DSP chips but still rely on the ARM
Cortex-M-series to do much of the work. The interpolators contain their
own registers and perform addition, multiplication, and some bit
operations. They’re intended to be used in loops where the result of
each calculation cycle updates an accumulator. Each iteration step the
interpolator performs takes one machine cycle.

The interpolator is complex and con�igurable. Rather than starting
with the full picture, piece by piece is built up starting with the simplest
example of adding some integers.

The hardware registers for the interpolator are de�ined in sio.h;
however, the offsets are too large to use as immediate mode offsets in
LDR and STR instructions. This time, rather than perform the address
calculations in the Assembly Language code, let the GNU Assembler do
the arithmetic, starting with a new base address:

INTERP_BASE: .word SIO_BASE +
SIO_INTERP0_ACCUM0_OFFSET

where SIO_INTERP0_ACCUM0_OFFSET is the offset of the �irst
interpolator register. Now the various registers can be accessed with
instructions like

LDR R3, INTERP_BASE
STR R0, [R3, #(SIO_INTERP0_ACCUM0_OFFSET-
SIO_INTERP0_ACCUM0_OFFSET)]

The .EQU directive will be used for each of these, to keep the length
of each line down. The �irst and easiest example is next.

Adding	an	Array	of	Integers
To get used to working with the interpolator, �irst of all is the simplest
case of adding an array of 32-bit integers. Here, only one of the control
registers and one of the two accumulators are accessed. Within the
interpolator there are two lanes, discussed later in this chapter; for this
example only lane 0 is used. Each lane has a control register that
con�igures how the data �lows and which operations to perform.

In this simple example, the lane control register
SIO_INTERP0_CTRL_LANE0 is con�igured for raw addition only, which
leaves most other things within the interpolator turned off. The
accumulator is initialized to zero. Then every time a value is set to the
SIO_INTERP0_ACCUM0_ADD register, the value is added to
accumulator 0. At the end, the value from accumulator 0 is read for the
�inal result. Listing 12-1 shows the Assembly Language code to perform
this.

.EQU INTERP0_CTRL_LANE0_OFF,
(SIO_INTERP0_CTRL_LANE0_OFFSET-
SIO_INTERP0_ACCUM0_OFFSET)
.EQU INTERP0_ACCUM0_OFF,
(SIO_INTERP0_ACCUM0_OFFSET-
SIO_INTERP0_ACCUM0_OFFSET)
.EQU INTERP0_ACCUM0_ADD_OFF,
(SIO_INTERP0_ACCUM0_ADD_OFFSET-
SIO_INTERP0_ACCUM0_OFFSET)

interp: MOV R0, #0 @ init value for
accum0
 MOV R1, #4 @ increment for array
of nums

 MOV R2, #1 @ decrement for
counter
 LDR R3, INTERP_BASE
 MOV R4, #1
 LSL R4,
#SIO_INTERP0_CTRL_LANE0_ADD_RAW_LSB
 STR R4, [R3, #INTERP0_CTRL_LANE0_OFF]
 STR R0, [R3, #INTERP0_ACCUM0_OFF]
 LDR R7, numsumdata
 LDR R6, =sumdata
nextnum: LDR R4, [R6]
 STR R4, [R3,#INTERP0_ACCUM0_ADD_OFF]
 ADD R6, R1
 SUB R7, R2
 BNE nextnum
 LDR R0, [R3, #INTERP0_ACCUM0_OFF]

Listing	12-1 Using one of the interpolators to add an array of integers

This is a complicated way to add an array of integers, especially
when the ARM CPU can do this itself. A lot of the code is to initialize the
interpolator and then the overhead of the loop, which reads and
processes the array of numbers. Here’s the complete set of interpolator
registers:
1.

BASE0,	BASE1,	BASE2: The numbers in these registers are input to
the process.

2.

ACCUM0,	ACCUM1: The two accumulator registers, although
ACCUM1 is an input when multiplying. Bit operations can be
applied to the accumulators as part of each cycle.

3.
RESULT0,	RESULT1,	RESULT2: The result registers that contain
the calculations for each step. These can be fed back into the
accumulators as part of the step.

The calculations the interpolator carries out depend on several
parameters in the control registers. A typical calculation looks like

RESULT0 = lower8bits(ACCUM0) + BASE0
RESULT1 = rightshift8bits(ACCUM1) + BASE1
RESULT2 = RESULT0 + RESULT1 + BASE2

Then RESULT0 and RESULT1 can be fed into the accumulators for
another iteration. The two accumulator calculations are referred to as
the two calculation lanes and are con�igured separately. The bit
operations are to AND by a series of 1 bits, perform a right shift, and
perform a sign extension. These are typically used to extract byte data
from a 32-bit word containing 4 bytes, perhaps 4 bytes of grayscale
data. Next is how to interpolate between values and why this
coprocessor is called an interpolator.

Interpolating	Between	Numbers
To perform interpolation, con�igure lane 0, containing accumulator 0
for blend mode. In blend mode the interpolator calculates

RESULT1 = BASE0 + ACCUM1 * (BASE1 - BASE0)

This formula uses elements from both lanes, dedicating more of the
interpolator. The multiplier is the lower 8 bits of ACCUM1 after bit
operations, interpreted as a fraction out of 255. This results in
multiplying the difference of BASE1 and BASE0 by a number between 0
and 1. This is interpolation: if ACCUM1 is 0, then RESULT1 is BASE0; if
ACCUM1 is 255, then RESULT1 is BASE1; and any other value of
ACCUM1 will be between BASE0 and BASE1 by the fractional amount.

The Assembly Language code to perform this calculation is
contained in Listing 12-2. This program also calculates the sum of these
interpolations, since ACCUM0 isn’t used otherwise. If BASE0 is zero,
then this calculates

Result = a1 * b1 + a2 * b2 + ... + an * bn

This is the calculation used when multiplying a matrix by a vector or
a matrix by a matrix. This is helpful in Machine Learning, the limitation
being that ai needs to be normalized between 0 and 1, and then the

multiplication isn’t as accurate as a full �loating-point calculation but is
much faster.

.EQU INTERP0_BASE0_OFF, (SIO_INTERP0_BASE0_OFFSET-
SIO_INTERP0_ACCUM0_OFFSET)
.EQU INTERP0_BASE1_OFF, (SIO_INTERP0_BASE1_OFFSET-
SIO_INTERP0_ACCUM0_OFFSET)
.EQU INTERP0_ACCUM1_OFF,
(SIO_INTERP0_ACCUM1_OFFSET-
SIO_INTERP0_ACCUM0_OFFSET)
.EQU INTERP0_PEEK1_OFF,
(SIO_INTERP0_PEEK_LANE1_OFFSET-
SIO_INTERP0_ACCUM0_OFFSET)
.EQU INTERP0_CTRL_LANE1_OFF,
(SIO_INTERP0_CTRL_LANE1_OFFSET-
SIO_INTERP0_ACCUM0_OFFSET)

@ Simple interpolation
interp2: MOV R0, #0 @ init value for
accum1
 MOV R1, #4 @ increment for
array of nums
 MOV R2, #1 @ decrement for
counter
 MOV R3, #63
 MOV R8, R3
 LDR R3, INTERP_BASE
 MOV R4, #1
 LSL R4,
#SIO_INTERP0_CTRL_LANE0_BLEND_LSB
 MOV R5, #1
 LSL R5,
#SIO_INTERP0_CTRL_LANE0_ADD_RAW_LSB
 ORR R4, R5
 STR R4, [R3, #INTERP0_CTRL_LANE0_OFF]
 MOV r4, #248 @ 0xf8
 LSL r4, r4, #7 @ becomes 0x7c00

 STR R4, [R3, #INTERP0_CTRL_LANE1_OFF]
 STR R0, [R3, #INTERP0_ACCUM0_OFF]
 LDR R7, numsumdata
 LDR R6, =sumdata
nextnum2: LDR R4, [R6]
 STR R4, [R3,#INTERP0_BASE0_OFF]
 ADD R6, R1
 LDR R4, [R6]
 STR R4, [R3,#INTERP0_BASE1_OFF]
 STR R0, [R3,#INTERP0_ACCUM1_OFF]
 ADD R0, R8
 LDR R4, [R3,#INTERP0_PEEK1_OFF]
 STR R4, [R3,#INTERP0_ACCUM0_ADD_OFF]
 ADD R6, R1
 SUB R7, R2
 BNE nextnum2
 @ Read the sum stored in accumulator 0
 LDR R0, [R3, #INTERP0_ACCUM0_OFF]

Listing	12-2 Code to interpolate between some numbers and keep the sum of the results

Lane 0 is con�igured for blend mode and raw add mode. The
necessary bit pattern could’ve been derived and done this in fewer
instructions, but since this is initialization code, it was left separate for
readability.

Lane 0 needed to be con�igured to not mask any bits; the
con�iguration is to allow bits 0 to bits 31 through, which is what is
needed in this case, see Exercise 3.

To read the result registers, read either the PEEK or POP register.
PEEK reads the result without doing anything else. POP reads the
value, but also moves the result registers to the accumulators,
depending on how the control registers are con�igured.

As the program goes through the loop, it reads the results but
doesn’t do anything with them. The program runs under gdb, and the
results are viewed by single stepping through the program.

The interpolator has other tricks like clamping the result range and
con�iguring the movement of data in the lanes. The RP2350	Datasheet
has a complete reference of all the functionality, and the Pico-series

SDK samples have a good selection of algorithms making use of the
interpolator. How to use �loating-point numbers and arithmetic from
the Assembly Language programs is covered next.

Floating	Point
The RP2040 doesn’t have �loating-point hardware and relies on
optimized routines contained in the Raspberry Pico 1 boot ROM. The
M33 contained in the RP2350 contains a single-precision �loating-point
FPU, greatly speeding and simplifying �loating-point calculations.

De�ining	Floating-Point	Numbers
The GNU Assembler has directives for de�ining storage for both single-
and double-precision �loating-point numbers. These are .single and
.double, for example:

.single 1.343, 4.343e20, -0.4343, -0.4444e-10

.double -4.24322322332e-10, 3.141592653589793

These directives always take base 10 numbers. The RP2350 only
supports single-precision �loating point, but there is support for double
precision in a separate coprocessor.

About	Floating-Point	Registers
The ARM FPU has its own set of registers. There are 32 single-precision
�loating-point registers that are referred to as S0, S1, ..., S31.

Chapter 7 gave the protocol for who saves which registers when
calling functions. These �loating-point registers need to be added to the
protocol.
Callee	saved: The function is responsible for saving registers S16–
S31, if the function uses them.
Caller	saved: Registers S0–S15 must be saved by the caller if they
are required to be preserved.

There are FPU-speci�ic functions to access these registers, for
instance, to push and pop these to and from the stack:

VPUSH {reglist}
VPOP {reglist}

For example:

VPUSH {S16-S31}
VPOP {S16-S31}

Loading	and	Saving	FPU	Registers
In Chapter 6, the LDR and STR instructions were covered to load
registers from memory and then store them back to memory. The
�loating-point coprocessor has similar instructions for its registers:

VLDR Sd, [Rn{, #offset}]
VSTR Sd, [Rn{, #offset}]

Both instructions support pre-index addressing offsets, for example:

 LDR R1, =fp1
 VLDR S4, [R1]
 VLDR S4, [R1, #4]
 VSTR S4, [R1]
 VSTR S4, [R1, #4]
 ...
.data
fp1: .single 3.14159
fp2: .single 4.3341
fp3: .single 0.0

Basic	Arithmetic
The �loating-point processor includes the four basic arithmetic
operations, along with a few extensions like square root.

Here is a selection of the instructions:

VADD.F32 {Sd}, Sn, Sm
VSUB.F32 {Sd}, Sn, Sm
VMUL.F32 {Sd,} Sn, Sm

VDIV.F32 {Sd}, Sn, Sm
VSQRT.F32 Sd, Sm

If the destination register is in curly brackets {}, it is optional so it
can be left out. This means apply the second operand to the �irst, so to
add S1 to S4, simply write

VADD.F32 S4, S1

These functions are all fairly simple, so next is an example to show
many of these in use.

Sample	Floating-Point	Program
Given two points (x1, y1) and (x2, y2), then the distance between them is
given by the formula

d = sqrt((y2-y1)2 + (x2-x1)2)
Listing 12-3 is a function to calculate this for any two single-

precision �loating-point pair of coordinates. Place this function in the
�ile distance.S.

@
@ Example function to calculate the distance
@ between two points in single precision
@ floating point.
@
@ Inputs:
@ R0 - pointer to the 4 FP numbers
@ they are x1, y1, x2, y2
@ Outputs:
@ R0 - the length (as single precision FP)

.global distance @ Allow function to be
called by others

@
distance:
 @ push registers that need to be saved

 push {LR}

 @ load all 4 numbers at once
 vldm R0, {S0-S3}

 @ calc s4 = x2 - x1
 vsub.f32 S4, S2, S0
 @ calc s5 = y2 - y1
 vsub.f32 S5, S3, S1
 @ calc s4 = S4 * S4 (x2-X1)^2
 vmul.f32 S4, S4
 @ calc s5 = s5 * s5 (Y2-Y1)^2
 vmul.f32 S5, S5
 @ calc S4 = S4 + S5
 vadd.f32 S4, S5
 @ calc sqrt(S4)
 vsqrt.f32 S4, S4
 @ move result to R0 to be returned
 vmov R0, S4

 @ restore what we preserved.
 pop {PC}

Listing	12-3 Function to calculate the distance between two points

Now place the code from Listing 12-4 in �loatingpoint.S, which
calls distance three times with three different points and prints out the
distance for each one.

@
@ Examples of the floating point routines.
@

.thumb_func @ Necessary because
sdk uses BLX
.global main @ Provide program
starting address to linker

 .equ N, 3 @ Number of points.

main: BL stdio_init_all @ initialize uart or
usb
 ldr r6, =points @ pointer to current
points
 mov r7, #N @ number of loop
iterations

loop: mov r0, r6 @ move pointer to
parameter 1 (r0)
 bl distance @ call distance
function

@ need to take the single precision return value
@ and convert it to a double, because the C printf
@ function can only print doubles.
 bl __aeabi_f2d
 mov r2, r0
 mov r3, r1
 ldr r0, =prtstr @ load print string
 bl printf @ print the distance

 add r6, #(4*4) @ 4 points each 4
bytes
 sub r7, #1 @ decrement loop
counter
 cmp r7, #0 @ is the loop done?
 bne loop @ loop if more points

loop2:
 B loop2

.data
 .align 4 @ necessary
alignment
points: .single 0.0, 0.0, 3.0, 4.0
 .single 1.3, 5.4, 3.1, -1.5
 .single 1.323e10, -1.2e-4, 34.55, 5454.234
prtstr: .asciz "Distance = %f\n"

Listing	12-4 Main program to call the distance function three times

Some	Notes	on	C	and	printf
Besides the usage of the FPU instructions like vmul.f32, there is a call
to __aeabi_f2d to convert the 32-bit �loating-point number for the
distance to a 64-bit number. The reason is that for a C function that
takes a variable number of arguments, all �loats are promoted to
doubles. If a �loat is passed, then printf prints garbage or generates a
fault. There’s no way to pass a single-precision �loat to printf; it only
takes a 64-bit double-precision �loating-point number.

Passing 64-bit quantities in Chapter 7 wasn’t discussed, but to do so
uses two 32-bit registers, if they are available or are placed on the
stack. As a parameter, the 64-bit quantity can either go in R0 and R1 or
into R2 and R3. Beyond that they go on the stack. Placing 64-bit
quantities in R1 and R2 is not allowed and why R1 is not used in calls
to printf. A 64-bit quantity can be returned in registers R0 and R1,
which is in the code.

The FPU integrated into the RP2350 doesn’t contain any conversion
routines, so these must be performed in software outside of the FPU. In
this case a routine from the Pico-series SDK is used.

Summary
In this chapter, the integer multiplication and division instruction were
studied. Next, the Pico-series interpolator coprocessor and how to use
it to interpolate as well as perform multiply and accumulate operations
were covered. The interpolator also has some bit manipulation
operations that combine to give limited DSP-like capabilities for input
data processing.

The RP2350 contains a single-precision �loating-point unit; the
registers and basic instructions for �loating-point operations were
presented. An example to calculate the distance between two points
was then examined to see how to use all these instructions together. An
aside on converting single- to double-precision numbers was presented
to explain how to use printf to see the results.

So far in this book everything was done on one of the two ARM
Cortex-M-series CPU cores. In Chapter 13, how to use the second CPU

core and coordinate the work between the two CPUs is explained.

Exercises
1.

Create a small program using the multiplication and division
examples and single step through it in the debugger to ensure how
it works is understood.

2.
Examine the bits of calculating –1 * 4 to see why it works either
interpreting these as unsigned or signed integers.

3.

In the interpolation example, lane 1 was set to the value 0x7c00.
Look up the de�inition of the bits for the lane control register in the
RP2350	Datasheet and see how this allows all the bits through with
no masking.

4.
The area of a circle is π * r2. Write a small Assembly Language
program that uses the FPU �loating-point routines to calculate the
area of circles with radii 1, 1.4, and 3. Print out the results.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_13

13.	Multiprocessing
Stephen Smith1

Gibsons, BC, Canada

About Saving Power
About Interprocessor Mailboxes
How to Run Code on the Second CPU
A Multiprocessing Example
About Fibonacci Numbers
About Factorials
The Complete Program
About Spinlocks
Regulating Access to a Memory Table
A Word on the SDK
Summary
Exercises

The Pico-series contains two ARM Cortex-M-series CPU cores. This
chapter looks at how to run code on the second processor. The second
processor is in power-conserving sleep state by default; how to wake it
up and assign it work to process will be shown. The Raspberry
company added the following helpful features to the Pico-series for
working with both CPU cores:
1.

There are two First-In-First-Outs (FIFOs), one for core 0 to send
data to core 1 and the other for core 1 to send data to core 0.

2. There are 32 spinlocks that can be assigned to control access to

shared resources such as common memory areas.

https://doi.org/10.1007/979-8-8688-2202-5_13

3.
The RP2350 adds a doorbell interrupt where one core can
interrupt the other core.

These are used in the sample programs, as well as three new ARM
Assembly Language instructions for putting a CPU to sleep and waking
it up. First, become familiar with these new instructions.

About	Saving	Power
Previously, waiting was done by entering tight loops; even the SDK’s
sleep_ms routine doesn’t really sleep, but rather enters a tight loop.
This is �ine, except that the CPU uses power to do this; however, the
ARM CPU has a good power-saving mode. This can be important to save
battery life when running off a battery or to reduce the heat generated
by the Pico-series chip.

Since most applications don’t use the second CPU, it’s put in a low-
power mode by the boot ROM and often remains that way. Here are
new instructions to wake up or put to sleep the second CPU, but these
can also be useful in other circumstances. The three new instructions
are
1.

SEV: Send an event. Causes a wakeup event to be sent to both
processors.

2.

WFE: Wait for an event. Enter a low-power state until an event is
signaled. This command will also wake up for a higher-priority
interrupt or debug event.

3.
WFI: Wait for an interrupt. Enter a low-power state until an
asynchronous interrupt is received.

Note These instructions are classi�ied as hints to the processor,
meaning the processor is free to ignore them if it wants. Generally,
put WFE or WFI instructions in a loop since they may wake up
prematurely or may not go to sleep immediately. This is to allow the

CPU to �inish up other operations, such as writing cache data to the
main memory before going to sleep.

Next, the instructions for the CPU core-to-core FIFO communication
channel follow.

About	Interprocessor	Mailboxes
The Pico-series provides two FIFOs for interprocessor communications,
and each FIFO contains eight 32-bit words. One FIFO is written by core
0 and read by core 1 and the other read by core 0 and written by core 1.
The same hardware registers are used by both, and the correct FIFO is
used based on which does the reading or writing. The FIFO hardware is
part of the Pico-series SIO hardware module, and hence the de�ines for
it are in sio.h. A CPU sends a message to the other CPU’s mailbox with

 LDR R1, siobase
 STR R0, [R1, #SIO_FIFO_WR_OFFSET]
...
siobase: .WORD SIO_BASE

To read a message use the following code:

LDR R1, siobase
LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

The preceding code is �ine as long as there is room in the FIFO in the
write case and if there is data available to read in the read case. To
determine these, there is a status register. The status register has bits to
tell whether the FIFO
1.

Contains data
2.

Is full
3.

Was read when empty
4. Was written to when it was full, so it was discarded

Cases 1 and 2 are the most often used; cases 3 and 4 probably

indicate a program bug. A more complete FIFO pop routine is given in
Listing 13-1.

fifo_pop:
@ If there is data in the fifo, then read it.
 LDR R1, siobase
 LDR R0, [R1, #SIO_FIFO_ST_OFFSET]
 MOV R2, #SIO_FIFO_ST_VLD_BITS
 AND R0, R2
 BNE gotone
 WFE @ No data so go back to sleep
 B fifo_pop @ try again if woken
gotone: LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 BX LR

Listing	13-1 Interprocessor FIFO read routine

This routine is blocking; if there’s no data, then it puts the processor
to sleep and waits for data. For this to work, the routine called by the
other core must add the SEV routine after writing to the FIFO to wake
this processor up. With these tools, how to get code running on the core
1 CPU is looked at.

How	to	Run	Code	on	the	Second	CPU
When the Pico-series is powered on, both CPU cores receive a RESET
interrupt and the initial IVT located at memory address 0x0 has the
routine _start set as the interrupt handler. The �irst thing _start does is
determine which CPU it’s running as using

 LDR R0, =SIO_BASE
 LDR R1, [R0, #SIO_CPUID_OFFSET]
 CMP R1, #0 @ are we core 0?
 BNE wait_for_vector @ not 0, so much be
core 1

The wait_for_vector routine con�igures the second CPU for deep
sleep mode and then waits on the interprocessor mailbox FIFO for data
to be sent from the �irst CPU. The data it’s waiting for is shown in Table
13-1.

Table	13-1 Data sent to the second CPU to start it

Sequence Contents Description

0 0 Magic number

1 0 Magic number

2 1 Magic number

3 IVT Interrupt Vector Table (use the one for core 0)

4 SP Top of stack (stack grows down)

5 routine Thumb routine to run (address must be odd)

The code that follows provides the same IVT as core 0, but a
completely different IVT could be built for the second core. Keep in
mind that it only receives interrupts if the interrupt is enabled by code
running on that core. A stack in the data segment is de�ined, and the top
of the stack is passed in the SP parameter.

Note Remember that the stack grows downward.

The last parameter is the address of the routine to run; it must be
de�ined as a thumb function. Since this routine is run via a BLX
instruction, the address must be odd. This gives enough information to
write a sample program to use the second core for processing. The code
for all this is located in the bootrom_rt0.S �ile from the RP2040 or
arm8_bootrom_rt0.S for the RP2350 in their respective bootrom
github repositories.

A	Multiprocessing	Example
To take an array of numbers and for each number to compute both the
factorial and Fibonacci number, this program is easily written by calling
two routines in turn on the same CPU core. However, performance is

important, and both these computations are independent of each other.
In this case, the Fibonacci number is calculated on core 0 and the
factorial on core 1. First of all, read the following review Fibonacci
numbers and factorials.

About	Fibonacci	Numbers
The Fibonacci numbers form a sequence (Fn) where each number is the
sum of the preceding two numbers starting with 0 and 1, that is:

F0 = 0, F1 =1

and

Fn = Fn-1 + Fn-2

The �irst few numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Fibonacci numbers appear in nature quite often and are closely
related to the golden ratio (Φ = (1 + √5) / 2 = ~1.618), which is also the
limit of the ratio of consecutive Fibonacci numbers as n goes to in�inity.

About	Factorials
The factorial of a positive integer n, denoted n!, is the product of all the
positive integers less than or equal to n. Thus:

n! = n x (n-1) x (n-2) x ... x 3 x 2 x 1

Factorials grow quickly, so in 32 bits the �irst few of these can be
calculated. The �irst few factorials are

1, 2, 6, 24, 120, 720, 5040, 40320, ...

Factorials are common in probability and combinatorics. With these
in hand, the complete program is presented.

The	Complete	Program

Listing 13-2 presents the complete listing, which should go in a �ile
multicore.S and accompany a standard CMakeLists.txt �ile.

@
@ Example using the second core for processing.
@

#include "hardware/regs/addressmap.h"
#if defined(PICO_RP2040)
#include "hardware/regs/m0plus.h"
#else
#include "hardware/regs/m33.h"
#endif
#include "hardware/regs/sio.h"

.thumb_func @ Necessary
because sdk uses BLX
.global main @ Provide
program starting address to linker

main: BL stdio_init_all @ initialize
uart or usb

 BL launch_core1

 MOV R4, #0 @ i = 0
 LDR R5, numNumbers
 LDR R6, =numbers
forloop: CMP R4, R5
 BGE mainloop
 LDR R0, [R6] @ next number
 BL fifo_push
 LDR R0, [R6]
 BL fibonacci
 MOV R2, R0
 LDR R1, [R6]
 LDR R0, =fibprintstr
 BL printf

 ADD R4, #1 @ i = i + 1
 ADD R6, #4 @ next word in
numbers

 B forloop
mainloop:
 B mainloop

.align 4
numNumbers: .WORD 5
numbers: .WORD 3, 5, 7, 10, 12
fibprintstr: .ASCIZ "Core 0 n = %d fibonacci =
%d\n"
factprintstr: .ASCIZ "Core 1 n = %d factorial =
%d\n"

.thumb_func
core1entry:
 PUSH {LR}
infinite:BL fifo_pop @ read number
to calculate
 MOV R4, R0 @ keep n for
the printf
 BL factorial @ call
factorial
 MOV R2, R0 @ set
parameters for printf
 MOV R1, R4
 LDR R0, =factprintstr
 BL printf
 B infinite @ repeat for
next number
 POP {PC} @ never
called.

fifo_push:
@ Push data to the fifo, without waiting.
 LDR R1, siobase

 STR R0, [R1, #SIO_FIFO_WR_OFFSET]
 SEV @ Wake up the
other core
 BX LR

fifo_pop:
@ If there is data in the fifo, then read it.
 LDR R1, siobase
 LDR R0, [R1, #SIO_FIFO_ST_OFFSET]
 MOV R2, #SIO_FIFO_ST_VLD_BITS
 AND R0, R2
 BNE gotone
 WFE @ No data so
go back to sleep
 B fifo_pop @ try again if woken
gotone: LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 BX LR

fifo_drain:
@ Read the fifo 8 times to ensure its empty then
wake up
@ the other core.
 LDR R1, siobase
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 SEV
 BX LR

launch_core1:
@ To start core1, writes the magic sequence:
@ 0, 0, 1, ivt, stack, routine

@ to core1's FIFO.
 PUSH {LR}
 BL fifo_drain @ Clear
anything left over
 MOV R0, #0
 BL fifo_push
 BL fifo_pop
 MOV R0, #0
 BL fifo_push
 BL fifo_pop
 MOV R0, #1
 BL fifo_push
 BL fifo_pop
 LDR R2, ppbbase
 LDR R1, vtoroffset
 ADD R2, R1
 LDR R0, [R2]
 BL fifo_push
 BL fifo_pop
 LDR R0, =stack1_end
 BL fifo_push
 BL fifo_pop
 LDR R0, =core1entry
 BL fifo_push
 BL fifo_pop
 POP {PC}

.align 4
siobase: .WORD SIO_BASE
ppbbase: .word PPB_BASE
#if defined(PICO_RP2040)
vtoroffset: .word M0PLUS_VTOR_OFFSET
#else
vtoroffset: .word M33_VTOR_OFFSET
#endif

@ R0 = fibonacci - in R0 since this is what is
returned
@ R1 = f0
@ R2 = f1
@ R3 = i
@ R4 = n
fibonacci:
 PUSH {R4}
 MOV R4, R0 @ Move n to
R4
 MOV R1, #0 @ Initial f0
 MOV R2, #1 @ Initial f1
 MOV R3, #2 @ Initial i =
2
loop: CMP R3, R4
 BGT done
 ADD R0, R1, R2 @ fibonacci =
f0 + f1
 MOV R1, R2 @ f0 = f1
 MOV R2, R0 @ f1 =
fibonacci
 ADD R3, #1 @ i = i + 1
 B loop
done: POP {R4}
 BX LR @ result is
in R0

@ R0 = factorial
@ R1 = i
@ R2 = n
factorial:
 MOV R2, R0 @ Move n to
R2
 MOV R0, #1 @ Initial
factorial
 MOV R1, #2 @ i = 2
loop2: CMP R1, R2

 BGT done2
 MUL R0, R1 @ factorial
*= i
 ADD R1, #1 @ i = i + 1
 B loop2
done2: BX LR @ result is
in R0

.align 4

.data
stack1: .FILL 0x800, 1, 0
stack1_end: .WORD 0

Listing	13-2 Multiprocessor program to calculate Fibonacci numbers and factorials

The routines that calculate Fibonacci numbers and factorials are
straightforward, implementing a simple FOR loop to calculate the
desired number. It’s worth reviewing these to ensure understanding of
how these simple calculations are performed in Assembly Language.

These three routines handle the interprocessor FIFO mailbox:
1.

�ifo_drain: Read the FIFO eight times to ensure it’s empty. The SDK
warns that there could be leftover data in the FIFO, and if run in the
debugger, observe there is one value left over that needs clearing. It
also calls SEV in case either processor has more processing to do
after this happens.

2.
�ifo_push: Writes one word to the FIFO. This routine isn’t blocking
and doesn’t check if the FIFO is full. In this case, the protocol means
there’s only one word in the FIFO at a time. The routine then calls
SEV to wake up the other processor to read the value. See Exercise
2 to implement blocking.

3.
�ifo_pop: Checks the status register to see if there’s data available;
if there isn’t, it goes to sleep by issuing a WFE instruction and loops
back. If there’s data, then it reads the data and returns it to the
caller.

The routine to start the second core is launch_core1. This routine
�irst clears any data left over in the FIFO and then executes the launch
protocol to start the code running there. This involves writing the data
it requires to the FIFO, after each word waiting for the same data to be
echoed back. Listing 13-2 doesn’t verify the data returned is the same
as that sent. Strictly speaking it should verify the core 1 code has
responded with what it sent and if not then start over; see Exercise 1.
Once core 1 is running, it listens to the interprocessor mailbox FIFO for
data to process.

The main routine starts core 1 going and then reads the array of
numbers targeted for performing the calculations. It pushes the
number to the FIFO for core 1 to calculate the factorial and then goes
ahead and calculates the Fibonacci number.

Each core prints its result using a printf statement. This works
because the Pico-series SDK ensures that printf is multiprocessor-safe.
On some systems the characters would be jumbled together, but in this
SDK the printing of the whole string is atomic. See Exercise 3 for an
alternative way to do this.

Next are instructions on how to prevent the two CPU cores from
stepping on each other.

About	Spinlocks
The routines presented so far are completely independent and don’t
share any data or resources. This usually isn’t the case when using two
processors; they normally need to access shared data, and that access
needs to be regulated, so that the two processors don’t interfere with
each other. For instance, if both processors update a table in memory, it
isn’t desirable if one processor overwrites the work of the other. When
this goes wrong, this leads to hard-to-replicate bugs that are dif�icult to
�ind.

The Pico-series provides 32 spinlocks to regulate access to shared
resources. A spinlock is a resource that a CPU tries to acquire, but if the
other CPU has it, it fails and the program spins using a closed loop until
it’s acquired.

Like everything else, spinlocks are controlled by a set of hardware
registers de�ined in sio.h. Of the 32 spinlocks, the �irst 16 are reserved

for exclusive use by the SDK, and then the other 16 are available for use
by programmers. If using the SDK, request a spinlock and one will be
allocated. Since the SDK isn’t being used, the program chooses spinlock
24, which is one the SDK will assign for exclusive use.

Each spinlock has a hardware register that controls it, and then
there is a separate hardware register that will show the status of all 32
spinlocks, which can be useful for debugging, since reading it doesn’t
change any spinlock’s state.

To acquire a spinlock, read its hardware register, and if it reads
nonzero, then it’s been successfully acquired; however, if the value read
is zero, spin the program to wait to acquire it. Listing 13-3 shows the
code to lock a spinlock.

 LDR R1, spinbase
repeat: LDR R0, [R1]
@ if spinlock is non-zero then we got it, else try
again.
 CMP R0, #0
 BEQ repeat @ spin
...
spinbase: .WORD SIO_BASE + SIO_SPINLOCK24_OFFSET

Listing	13-3 Code to lock a spinlock

To release a spinlock, any value is written to the spinlock’s
hardware register. Listing 13-4 shows the code to release a spinlock.

LDR R1, spinbase
STR R0, [R1] @ value written doesn't matter

Listing	13-4 Code to unlock a spinlock

Next is a complete program that makes use of spinlocks.

Regulating	Access	to	a	Memory	Table
This example program uses both CPU cores to populate a table of the
numbers 0–99 and their squares. It also puts the core number in each
row, to mark the row as done, so which core �illed in each row can be
seen. If spinlocks weren’t used, then the cores would overwrite each

other’s work. Even though a row is marked as used �irst, there’s a
window of opportunity where both cores read a row as available, then
both write to it at once, and the core writing second wins. Using
spinlocks to protect memory tables is common in operating systems,
like Linux that supports multiple cores. Listing 13-5 is the complete
program listing that should be called spinlock.S; after running, it will
print the table of squares to see what work was done and which core
�illed in each row.

@
@ Example using the second core for processing.
@ Protecting a memory table with a spin lock.
@

#include "hardware/regs/addressmap.h"
#if defined(PICO_RP2040)
#include "hardware/regs/m0plus.h"
#else
#include "hardware/regs/m33.h"
#endif
#include "hardware/regs/sio.h"

.thumb_func @
Necessary because sdk uses BLX
.global main @ Provide
program starting address to linker

 .EQU numEntries, 100
 .EQU coreOffset, 0
 .EQU numOffset, 4
 .EQU numSquaredOffset, 8
 .EQU sizeTabRow, 12
 .EQU emptyRow, 255

main: BL stdio_init_all @
initialize uart or usb

 BL launch_core1

 BL coremain

@ ensure everything finishes
 MOV R0, #255
 BL sleep_ms

@ print out the table
 MOV R4, #0 @ i = 0
 LDR R5, =numEntries
 LDR R6, =table
printtab:
 LDR R0, =printstr
 LDR R1, [R6, #coreOffset]
 LDR R2, [R6, #numOffset]
 LDR R3, [R6, #numSquaredOffset]
 BL printf
 ADD R4, #1 @ i = i +
1
 ADD R6, #sizeTabRow
 CMP R4, R5 @ i =
numEntries?
 BLT printtab

mainloop:
 WFE @ lower
power now that we are done
 B mainloop

.align 4
printstr: .ASCIZ "Core %d n = %d n * n = %d\n"
.align 4

.thumb_func
coremain:
 PUSH {R4, R5, R6, R7, LR}
 MOV R4, #0 @ i = 0
 LDR R5, =numEntries
 LDR R6, =table

 MOV R7, #emptyRow
forloop:
 @ lock spinlock
 BL lockSpinLock
 @ determine if current row is free
 LDRB R0, [R6]
 CMP R0, R7
 BNE next @ not
free, continue
 @ update table with core number, i, i*i
 LDR R2, =SIO_BASE
 LDR R2, [R2, #SIO_CPUID_OFFSET]
 @ unlock spinlock after marking row for
this core
 BL unlockSpinLock
 @ update next two fields
 STR R2, [R6, #coreOffset]
 STR R4, [R6, #numOffset]
 MOV R0, R4
 MUL R0, R0
 STR R0, [R6, #numSquaredOffset]
@ Perform extra work, otherwise core 1 stays ahead
@ of core 0 and allocates all the table slots.
 .REPT 10
 NOP
 .ENDR
@ spinlock already unlocked, so jump ahead
 B cont
next:
 @ unlock spinlock in case table entry
taken
 BL unlockSpinLock
cont: ADD R4, #1 @ i = i +
1
 ADD R6, #sizeTabRow
 CMP R4, R5
 BLT forloop

 @ Only return if we are core 0.
 LDR R2, =SIO_BASE
 LDR R2, [R2, #SIO_CPUID_OFFSET]
 CMP R2, #0
 BEQ ret
sleep: WFE
 B sleep

ret: POP {R4, R5, R6, R7, PC}

lockSpinLock:
 LDR R1, spinbase
repeat: LDR R0, [R1]
@ if spinlock is non-zero then we got it, else try
again.
 CMP R0, #0
 BEQ repeat
 BX LR

unlockSpinLock:
 LDR R1, spinbase
 @ value written doesn't matter
 STR R0, [R1]
 BX LR

fifo_push:
@ Push data to the fifo, without waiting.
 LDR R1, siobase
 STR R0, [R1, #SIO_FIFO_WR_OFFSET]
 SEV @ Wake up
the other core
 BX LR

fifo_pop:
@ If there is data in the fifo, then read it.
 LDR R1, siobase
 LDR R0, [R1, #SIO_FIFO_ST_OFFSET]
 MOV R2, #SIO_FIFO_ST_VLD_BITS

 AND R0, R2
 BNE gotone
 WFE @ No data
so go back to sleep
 B fifo_pop @ try
again if woken
gotone: LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 BX LR

fifo_drain:
@ Read the fifo 8 times to ensure its empty then
wake up
@ the other core.
 LDR R1, siobase
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]
 SEV
 BX LR

launch_core1:
@ To start core1, writes the magic sequence:
@ 0, 0, 1, ivt, stack, routine
@ to core1's FIFO.
 PUSH {LR}
 BL fifo_drain @ Clear
anything left over
 MOV R0, #0
 BL fifo_push
 BL fifo_pop
 MOV R0, #0
 BL fifo_push

 BL fifo_pop
 MOV R0, #1
 BL fifo_push
 BL fifo_pop
 LDR R2, ppbbase
 LDR R1, vtoroffset
 ADD R2, R1
 LDR R0, [R2]
 BL fifo_push
 BL fifo_pop
 LDR R0, =stack1_end
 BL fifo_push
 BL fifo_pop
 LDR R0, =coremain
 BL fifo_push
 BL fifo_pop
 POP {PC}

.align 4
siobase: .WORD SIO_BASE
ppbbase: .WORD PPB_BASE
#if defined(PICO_RP2040)
vtoroffset: .word M0PLUS_VTOR_OFFSET
#else
vtoroffset: .word M33_VTOR_OFFSET
#endif

@ Spinlock 24 is first one available for exclusive
use.
spinbase: .WORD SIO_BASE +
SIO_SPINLOCK24_OFFSET

.align 4

.data
stack1: .FILL 0x800, 1, 0
stack1_end: .WORD 0

table: .FILL numEntries * sizeTabRow, 1,
emptyRow

Listing	13-5 Program to update the table of squares using both cores

This example is contrived in that each processor performs exactly
the same thing, leading to weird timing occurrences. Notice that after
writing the data to the table, ten NOP instructions are performed. If this
step is left out, then core 1 keeps ahead of core 0 and writes all the
entries in the table; see Exercise 4.

In the main program after starting core 1 and �illing in its share of
table entries, perform a sleep to make sure core 1 is �inished
processing. In a more robust system, a more deterministic manner
should be used to ensure core 1 is complete; see Exercise 5.

In this chapter code was written directly to the hardware registers;
however, there are Pico-series SDK functions that can be used as
follows.

A	Word	on	the	SDK
The Pico-series SDK contains routines to start work on the second CPU
core, as well as to use the interprocessor FIFOs and spinlocks. The SDK
routines are more robust than presented here since they have error
checking. Unless there are speci�ic use cases not covered by the SDK,
use the routines contained there. The routines presented here are to
demystify how the Pico-series works and provide intuition-based
instructions for a deeper knowledge of how the operations work.

Summary
This chapter covered how to use the second CPU core contained on the
RP2040 or RP2350. Also, three new Assembly Language instructions
were mastered to help conserve power. How to send messages between
the two CPU cores and how to start programs running on the second
core were explained. Since both CPU cores access the same memory on
the Pico-series, how to use spinlocks to control shared access to avoid
the CPUs overwriting each other’s work was learned.

In Chapter 14, how to connect a Pico-series microcontroller to the
world wide web is covered.

Exercises
1.

Add error checking to launch_core1. Break out the sending and
receiving of data to a separate routine that will check that the
returned data is the same as the sent data and if not will return a
failure code starting the process over.

2.
The �ifo_push routine doesn’t check if the FIFO is full before
writing its data. Use the FIFO status register to check if the FIFO is
full and if so then wait until it has free space; enter a low-power
state while waiting, like how �ifo_pop waits for data to arrive.

3.
Each processor prints out the result of its calculation using printf.
However, a more normal approach is to have core 1 write its result
to the FIFO, have core 0 read it, and then use the result, in this case,
to print it. Change the program to work this way, so core 1 is purely
a computation service that’s called to calculate factorials.

4.
Remove the ten NOP instructions after the table row is written.
How does that affect the results? Explain what’s going on. How can
few NOPs maintain an even workload?

5.
Change the program so that core 1 writes a value to the
interprocessor FIFO when it �inishes its work. Next, have the main
program wait for this value rather than calling a sleep function.

6.
Both programs in this chapter make use of FOR-type loops to
iterate through tables or to count through integers. Single step
through several of these loops in gdb to understand how they
work.

7.
Make the timer interrupt version of the �lashing lights program
from Chapter 11 more ef�icient by inserting a WFI when it doesn’t
have anything else to do.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2026
S. Smith, RP2040	Assembly	Language	Programming, Maker Innovations Series
https://doi.org/10.1007/979-8-8688-2202-5_14

14.	How	to	Connect	Pico	to	IoT
Stephen Smith1

Gibsons, BC, Canada

About the Pico-series Built-In Temperature Sensor
About Home-Brewed Communications Protocol
About the Server Side of the Protocol
About the Pico-series UART
Converting Integers to ASCII
Viewing the Main Program
About IoT, Wi-Fi, Bluetooth, and Serial Communications
Summary
Exercises

This chapter presents a complete realistic microcontroller project
written entirely in Assembly Language. A Pico-series device collects
data and then provides it to a central server. Since this is a book on
Assembly Language and not electronics, components built into the
Pico-series are used, rather than requiring extra components. The built-
in temperature sensor is used to collect data, and then the program
communicates with a server using UART1. It’s used rather than UART0,
so that UART0 can be used for debugging and receive output from
printf statements. The assumption is that a Raspberry Pi is used for
debugging and development, so this is used as the server and a Python
program is written to poll the various devices connected to it for data.

The Raspberry Pi 5’s UART is connected with TX on pin 8 and RX on
pin 10. For the Raspberry Pi Pico-series, UART1 is connected to GPIO 4
and GPIO 5. This makes physical pin 6 TX and pin 7 RX. Connect the RX

https://doi.org/10.1007/979-8-8688-2202-5_14

from the Raspberry Pi 5 to the TX on the Pico-series and the TX to the
RX.

This project gives an opportunity to build a slightly larger program
that uses everything learned to show how to put it all together. The
program is divided into separate modules that are presented one by
one. First of all, the Pico-series analog-to-digital converter (ADC) and
the built-in temperature sensor are presented.

About	the	Pico-series	Built-In	Temperature
Sensor
Many sensor devices have no digital logic and work in an analog
fashion, for instance, many temperature sensors, such as the Pico-series
built-in one, measure the voltage of a biased bipolar diode, which varies
depending on the ambient temperature. The Pico-series datasheet then
provides a formula to convert this voltage to temperature.

The Pico-series contains an analog-to-digital converter (ADC) that
measures the voltage received at a pin and returns a 12-bit number
proportional to the voltage range. The range of voltages for the
temperature sensor is 0–3.3V, so to convert from the 12-bit number to
voltage, multiply it by 3.3/212. The RP2350	Datasheet gives a formula to
convert this voltage into degrees Celsius.

Doing it this way requires �loating-point arithmetic, which isn’t
preferred. Instead, combine these two formulas—see Exercise 4—to
derive a formula that can be evaluated easily using only integer
arithmetic:

Temp = 437 - (100 * rawADC) / 215

To divide the rawADC by 2.15, multiply both the numerator and
denominator by 100, which is a good trick to only use integer
arithmetic. This is performed in the calcTempCelc function that uses
the SDIV instruction on an RP2350 or the division coprocessor on an
RP2040.

The ADC has a status and control register that enables both the ADC
and the temperature sensor, although these are turned off by default to
save power. The ADC connects to four GPIO pins numbered 0–3 as well

as the temperature sensor on port 4. The ADC can either do a round-
robin scan on all its ports or read one port. Since only the temperature
sensor is used, the control register is set to use port 4. The initialization
routine builds up all the bits for this, so it can write it in one operation.

Note The ADC hardware registers are not single cycle with
separate clear and set functions; all the bits used must be set every
time it’s written to or read the port, add the bits used, and then write
the value back.

When operating on the ADC, it takes several CPU cycles to perform its
operation. This is why after initializing the ADC, the status register
must �inish powering up before its ready for use. Similarly, when a
temperature reading is taken, the program waits until the ADC �inishes
the operation.

Listing 14-1 contains the routines for programming the ADC
controller and reading the temperature. Place these routines in a �ile
called adctemp.S.

@
@ Module to interface to the RPxxxx ADC controller
@ as well as the built-in analog temperature
sensor.
@

#include "hardware/regs/addressmap.h"
#include "hardware/regs/adc.h"

.EQU TEMPADC, 4

.thumb_func

.global calcTempCelc, initTempSensor, readTemp

@ Function to convert raw ADC data to degrees
celcius.
@ Calculates degrees = 437 - 100 * R0 / 215
@

@ Registers:
@ Input: R0 - raw 12-bit ADC value
@ Output: R0 - degrees celcius
@ Other: R1 - values to multiply or divide
@
calcTempCelc:
 PUSH {LR} @
needed since calls intDivide
 MOV R1, #100
 MUL R0, R1 @ R0
= R0 * 100
 MOV R1, #215
#if defined(PICO_RP2040)
 BL intDivide @ R0
= R0 / 215
#else
 SDIV R0, R1
#endif
 LDR R1, tempcalcoff
 SUB R0, R1, R0 @ R0
= 437 - R0
 POP {PC}

@ Initialize the ADC and temperature sensor.
@ No input parameters or return values.
@ Registers used: R1, R2, R3
initTempSensor:
@ Turn on ADC and Temperature Sensor
@ We set the bits to enable the ADC, the temp
sensor
@ and select ADC line 4 (tempadc). All these bits
are
@ in the ADC status register.
 MOV R1, #TEMPADC
 LSL R1, #ADC_CS_AINSEL_LSB
 ADD R1, #
(ADC_CS_TS_EN_BITS+ADC_CS_EN_BITS)

 LDR R2, adcbase
 STR R1, [R2, #ADC_CS_OFFSET]

@ It takes a few cycles for these to start up, so
wait
@ for the status register to say it is ready.
notReady2:LDR R1, [R2, #ADC_CS_OFFSET]
 MOV R3, #1
 LSL R3, #ADC_CS_READY_LSB
 AND R1, R3
 BEQ notReady2 @
not ready, branch
 BX LR

@ Function to read the temperature raw value.
@ Inputs - none
@ Outputs: R0 - the raw ADC temperature value
@ Function requests a reading from the status
reguiter
@ then waits for it to complete, then reads and
returns
@ the value.
readTemp:
 LDR R2, adcbase
 LDR R1, [R2, #ADC_CS_OFFSET] @
load status register
 ADD R1, #ADC_CS_START_ONCE_BITS @
add read value once
 STR R1, [R2, #ADC_CS_OFFSET] @
write to do it
notReady: LDR R1, [R2, #ADC_CS_OFFSET] @
wait for read to complete
 MOV R3, #1
 LSL R3, #ADC_CS_READY_LSB @
done yet?
 AND R1, R3
 BEQ notReady

 LDR R0, [R2, #ADC_RESULT_OFFSET] @
read result
 BX LR @
return value

 .align 4
adcbase: .word ADC_BASE @
base for analog to digital
tempcalcoff: .word 437

Listing	14-1 Routines to activate the ADC controller and read the temperature

This chapter separates the various functions into separate source
code modules, to describe how to construct a larger program in a real
situation. Now there’s a raw ADC temperature reading, but before
processing it further, consider how to send it to the server.

About	Home-Brewed	Communications
Protocol
In this simple setup, the Pico-series board is connected directly to a
Raspberry Pi with short cables. The output from the UARTs in both
devices is low power and not suitable for long cables. However, there
are many driver chips and devices available that can boost this signal to
standards, like RS-422 and RS-485 that support long cables made of a
twisted pair of wires. These can be hundreds of feet long and support
multiple devices attached like Christmas tree lights. The design of the
server-to-microcontroller protocol assumes this sort of architecture.
The server polls for each device in turn for its data. The microcontroller
only sends data to the server in response to a poll. The server sends out
a poll consisting of three characters:
1.

SOH: A start of header (ASCII character 1)
2.

ADDR: The address of the device polled, in this case ASCII “1” and
up

3. ETX: An end of text character (ASCII character 3)

The terminal answers with a data packet of the following form:
1.

SOH: A start of header (ASCII character 1).
2.

ADDR: The address of the device, in our case ASCII “1” and up.
3.

STX: A start of text (ASCII character 2).
4.

Message: The message data consists of printable ASCII characters.
5.

ETX: An end of text character (ASCII character 3).
This is a simple protocol with no error checking—see Exercise 5—

that simply demonstrates the start of a more full-featured protocol.
Each device connected to the twisted wire pair needs to be con�igured
with its own unique address. In this case, this is a program constant, so
it needs to be changed and the program recompiled in each case. The
server will be implemented as a Python program that runs on the
Raspberry Pi.

About	the	Server	Side	of	the	Protocol
The server program is implemented in Python, as this is an easy and
popular way to program a Raspberry Pi. The routine to decode a
received packet is implemented as a state machine, where it changes
state if the correct character is received and returns to waiting for a
SOH character if it isn’t. The program polls a range of addresses and has
a one-second timeout, so if nothing is received in one second, it
assumes the terminal isn’t there and goes on to the next one.

The best way to understand how the program works is to single
step through the parsing of a received packet to see how and when the
state changes. Listing 14-2 contains this Python program that should be
stored in a �ile called serpolling.py and run from the Thonny Python
IDE.

import serial

import time
from enum import Enum

class protocolState(Enum):
 SOH = 1
 ADDR = 2
 STX = 3
 MSG = 4

def sendPollreadResp(addr):
 ser.write(bytearray([1, addr, 3]))
 state = protocolState.SOH
 msg = bytes()
 while 1:
 x = ser.read()

 if x == b'':
 return(bytearray([0]))
 elif state == protocolState.SOH:
 if x[0] == 1:
 state = protocolState.ADDR
 elif state == protocolState.ADDR:
 if x[0] == addr:
 state = protocolState.STX
 else:
 return(bytearray([0]))
 elif state == protocolState.STX:
 if x[0] == 2:
 state = protocolState.MSG
 else:
 return(bytearray([0]))
 elif state == protocolState.MSG:
 if x[0] == 3:
 return msg
 else:
 msg = msg + x

 return(bytearray([0]))

ser = serial.Serial(
 # port = '/dev/serial0',
 port = '/dev/ttyAMA0',
 baudrate = 115200,
 timeout=1
)

while 1:
 for addr in range(49, 53):
 msg = sendPollreadResp(addr)
 print(msg)
 time.sleep(1)

Listing	14-2 The Python server program

Note The serial port’s device name has changed from Raspberry Pi
OS version to version. At the time of writing, it is /dev/ttyAMA0 on
Bookworm; previously it was /dev/serial0. On Trixie it is
/dev/ttyACM0. It might change again in the future.

With the server polling done, now back to the Pico-series
microcontroller to see how to use the UART to receive the poll and
respond to it.

About	the	Pico-series	UART
The UART device on the RP2040/RP2350 chip takes bytes and
serializes them and then sends them out on the wire bit by bit, or it
reads bit by bit and assembles the bits into bytes for the consuming
program. The UART contains receive and transmit FIFOs to buffer a few
characters. There are programs within the SDK samples to demonstrate
how to perform this functionality using the PIO coprocessors, but here
one of the two built-in UART controllers is used. Like all connected
hardware, there is a bank of hardware registers for controlling these.
There are two registers for setting the baud rate and the speed at which
the bits are put on the wire and then two control registers for setting all

the other properties. To send and receive data, there is a data register;
then there is a collection of status registers that show what is going on.

The UART controller commands several control pins usually used
with modems, but the Raspberry Pi Pico-series doesn’t have a way to
connect any of these to external GPIO pins, so a lot of the UART
controller’s functionality can be ignored. Listing 14-3 contains the
initialization routine for the UART along with routines to send and
receive bytes of data. Magic numbers are set to the baud rate registers.
The calculation of these is contained in the RP2350	Datasheet and left
to Exercise 8 for the general case.

The line control register UARTLCR_H sets
1.

On the 8-bit mode, by setting the two WLEN bits to 1
2.

The FEN bit which enables the FIFOs
Parity is not enabled, so it stays off.
The control register UARTCR sets the bits to

1.
Enable the receiver

2.
Enable the transmitter

3.
Enable the UART
When reading a byte, the �lag register UARTFR is used to determine

the following:
1.

When reading, if the receive FIFO isn’t empty, then there’s a
character.

2.

When transmitting, if the transmit FIFO isn’t full, then it’s possible
to transmit.

These conditions are busy-waited on in the routines in Listing 14-3

that goes in a �ile called muart.S.

@

@ Routines to handle the UART
@

#include "hardware/regs/addressmap.h"
#include "hardware/regs/uart.h"
#include "hardware/regs/io_bank0.h"
#include "hardware/regs/pads_bank0.h"

.thumb_func

.global initUART, readUART, sendUART

@ Function to initialize UART1.
@ Sets 115200 baud, 8 bits, no parity.
@ Enables the devices and configures the gpio
pins.
@ No inputs or outputs.
@ Registers used: R0, R1.
@
initUART:
 PUSH {LR}
 LDR R1, uart1base
 @ Set baud rate to 115200
 @ See the RP2040 datasheet for the magic
values 67 and 52
#if defined(PICO_RP2040)
 MOV R0, #67
 STR R0, [R1, #UART_UARTIBRD_OFFSET]
 MOV R0, #52
 STR R0, [R1, #UART_UARTFBRD_OFFSET]
#else
 MOV R0, #81
 STR R0, [R1, #UART_UARTIBRD_OFFSET]
 MOV R0, #24
 STR R0, [R1, #UART_UARTFBRD_OFFSET]
#endif
 @ Set 8 bits no parity

 MOV R0, #
(UART_UARTLCR_H_WLEN_BITS+UART_UARTLCR_H_FEN_BITS)
 STR R0, [R1, #UART_UARTLCR_H_OFFSET]
 @ Enable receive and transmit
 MOV R0, #3 @
enable TX and RX in one shot
 LSL R0, #UART_UARTCR_TXE_LSB
 ADD R0, #UART_UARTCR_UARTEN_BITS
 STR R0, [R1, #UART_UARTCR_OFFSET]

 MOV R0, #4 @
GPIO4 pin is UART1 TX
 BL gpioInit
 MOV R0, #5 @
GPIO5 pin is UART1 RX
 BL gpioInit

 POP {PC}

@ Function to read a character from the UART.
@ Waits for a character (no timeout) then reads
the character.
@ Inputs: none
@ Outputs: R0 - character read
@ Registers used: R0, R1, R2
readUART:
 LDR R1, uart1base @
UART hardware register bank
 @ Wait for a character - that receive fifo
isn't empty
waitr: LDR R0, [R1, #UART_UARTFR_OFFSET] @
read flag register
 MOV R2, #UART_UARTFR_RXFE_BITS @
bits for rx fifo empty
 AND R0, R2
 BNE waitr @
set means fifo empty

 @ Read the character
 LDR R0, [R1, #UART_UARTDR_OFFSET] @
read the received character
 BX LR

@ Function to send a character from the UART.
@ Waits for room in the transmit fifo then sends
the character.
@ Inputs: R0 - character to send
@ Outputs: none
@ Registers used: R0, R1, R2, R3
sendUART:
 LDR R1, uart1base
 @ Wait for transmitter free
waitt: LDR R3, [R1, #UART_UARTFR_OFFSET] @
read flag register
 MOV R2, #UART_UARTFR_TXFF_BITS @ tx
fifo full bits
 AND R3, R2
 BNE waitt @ set
means fifo full
 @ Write the character
 STR R0, [R1, #UART_UARTDR_OFFSET] @
send the character
 BX LR

@ Function to initialize the GPIO to UART
function.
@ Inputs: R0 - pin number
@
gpioInit:
@ Enable input and output for the pin
 MOV R8, R0 @
Save pin number
 LDR R2, padsbank0
 LSL R3, R0, #2 @ pin
* 4 for register address

 ADD R2, R3 @
Actual set of registers for pin
 MOV R1, #PADS_BANK0_GPIO0_IE_BITS
 LDR R4, setoffset
 ORR R2, R4
 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

@ Set the function number to UART.
 LSL R0, #3 @
each GPIO has 8 bytes of registers
 LDR R2, iobank0 @
address we want
 ADD R2, R0 @
add the offset for the pin number
 MOV R1,
#IO_BANK0_GPIO4_CTRL_FUNCSEL_VALUE_UART1_TX
 STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]
#if HAS_PADS_BANK0_ISOLATION
@ Remove pad isolation now that the correct
peripheral is set
 LDR R2, padsbank0
 MOV R0, R8 @
restore pin numbere
 LSL R3, R0, #2 @
pin * 4 for register address
 ADD R2, R3 @
Actual set of registers for pin
 LDR R4, clearoffset
 ADD R2, R4
 LDR R1, PBGIB
 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]
#endif
 BX LR

 .align 4
uart1base: .word UART1_BASE

gpiobase: .word SIO_BASE @
base of the GPIO registers
iobank0: .word IO_BANK0_BASE @
base of io config registers
padsbank0: .word PADS_BANK0_BASE
setoffset: .word REG_ALIAS_SET_BITS
clearoffset: .word REG_ALIAS_CLR_BITS
#if HAS_PADS_BANK0_ISOLATION
PBGIB: .word PADS_BANK0_GPIO0_ISO_BITS
#endif

Listing	14-3 The module for controlling serial communications

Note The baud rate division constants are conditionally compiled
since the RP2040 runs at 125MHz and the RP2350 at 150MHz.

The RP2350 requires the extra step of enabling the pads where
the code is conditionally compiled in, if needed.

Now that characters can be received and transmitted over the serial
connection, a utility math routine is required.

Converting	Integers	to	ASCII
A routine is needed to convert binary integers into ASCII strings. This is
done backward, by �irst of all getting the least signi�icant digit and next
the most signi�icant digit last and then reversing the digits at the end.
This is done by repeatedly dividing by ten. The remainder is the next
digit, and the quotient will be divided again, until there are no more
digits. At the beginning, note if the number is negative and remember
that a negative sign is added at the end; then negate the number to
make it positive. The algorithm works for negative numbers, except for
where a digit is converted to ASCII by adding the ASCII “0” character.

At the end, add the negative sign if needed, and then reverse the
string to get it in a human-readable form. The routines for this and
division on the RP2040 are in Listing 14-4 that should go in a �ile called
mmath.S.

@
@ Some useful math support routines including:
@ 1. Divide two integers using the coprocessor
@ 2. Convert an integer to ascii (in decimal)
@

#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"

.thumb_func

.global intDivide, itoa

@ macro to delay 8 clock cyles,
@ the time it takes to divide
.macro divider_delay
 // delay 8 cycles
 b 1f
1: b 1f
1: b 1f
1: b 1f
1:
.endm

#if defined(PICO_RP2040)
@ Function to divide two 32-bit integers
@ Inputs: R0 - Dividend
@ R1 - Divisor
@ Outputs: R0 - Quotient
@ R1 - Remainder
@
intDivide:
 LDR R3, =SIO_BASE
 STR R0, [R3, #SIO_DIV_SDIVIDEND_OFFSET]
 STR R1, [R3, #SIO_DIV_SDIVISOR_OFFSET]
 divider_delay
 LDR R1, [R3, #SIO_DIV_REMAINDER_OFFSET]
 LDR R0, [R3, #SIO_DIV_QUOTIENT_OFFSET]
 BX LR

#endif

@ Function to convert a 32 bit integer to ASCII
@ Inputs: R0 - number to convert
@ R1 - pointer to buffer for ASCII
string
@ Outputs: R1 - contains the string
@
@ R7 - flag whether number positive or negative.
@ R6 - original buffer (since we increment R1 as
we go along).
@ R4 - holds R1 around function calls (since they
overwrite it)
@ R2, R3 - temp variables for reversing buffer
@
@ Builds the buffer in reverse by dividing by 10,
placing the
@ remainder in the buffer and repeating, then at
the end adding
@ a minus sign if needed. Then reverses the buffer
to get
@ the correct order
itoa:
 PUSH {R4, R6, R7, LR}
 MOV R6, R1 @ original
buffer
 MOV R7, #0 @ assume number
is positive
 CMP R0, #0 @ is number
positive
 BPL convertdigits
 MOV R7, #1 @ number is
negative
 NEG R0, R0 @ make number
positive

convertdigits:

 MOV R4, R1 @ preserve R1
 MOV R1, #10 @ get least sig
digit
#if defined(PICO_RP2040)
 BL intDivide
#else
 MOV R2, R0 @ Keep to calc
remainder
 SDIV R0, R1 @ R0 is quotient
 MOV R7, R0
 MUL R7, R1
 SUB R1, R2, R7
#endif
 ADD R1, #'0' @ convert digit
to ascii
 STRB R1, [R4] @ store ascii
digit in buffer
 MOV R1, R4 @ restore R1
 ADD R1, #1 @ increment R1
for next character
 CMP R0, #0 @ are we done
(no more digits)?
 BEQ finish @ yes, go to
finish up
 B convertdigits @ no, loop to do
next digit

finish:
 CMP R7, #0 @ is the number
negative?
 BEQ plus
 MOV R0, #'-' @ yes, add neg
sign
 STRB R0, [R1] @ store neg
 ADD R1, #1 @ next position
for null

plus: MOV R0, #0 @ null
terminator
 STRB R0, [R1] @ null terminate
 SUB R1, #1 @ move pointer
before null

 @ reverse the buffer
 SUB R2, R1, R6 @ length of
buffer
revloop: LDRB R0, [R1] @ get chars to
reverse
 LDRB R3, [R6]
 STRB R0, [R6] @ store reversed
 STRB R3, [R1]
 SUB R1, #1 @ decrement end
 ADD R6, #1 @ increment
start
 SUB R2, #2 @ done two
characters
 BPL revloop @ still chars to
process
 POP {R4, R6, R7, PC}

Listing	14-4 Routines for division and converting integers to ASCII

With this, the modules needed to perform the various individual
functions required are complete. Next, the main program that uses all
the functions is examined.

Viewing	the	Main	Program
The main program implements a simple state machine to wait for a
valid poll from the server. When received, it builds and sends the
response message. It reads the temperature sensor and formats an
ASCII message of the form “Temp: 23”. The message sent conforms to
the protocol and is interpreted on the server. With the various modules
that are now available, the main program is fairly simple.

The state machine is a simpli�ied Assembly Language version of the
one presented in the Python program. It is easier because there is no
message received from the server, just SOH Addr ETX. The complete
program is presented in Listing 14-5 and should go in a �ile called iot.S.

@
@ Assembly Language program to answer polls from
@ a server and respond with the current
temperature.
@

@ States for the state machine
.EQU SOH_State, 1
.EQU ADDR_State, 2
.EQU ETX_State, 3

@ Special protocol characters
.EQU SOHChar, 1
.EQU STXChar, 2
.EQU ETXChar, 3
.EQU TermAddrChar, 49

.thumb_func

.global main @ Provide
program starting address

main:
@ Init the devices
 BL initTempSensor
 BL initUART

loop:
@ Starting state is waiting for SOH
 MOV R7, #SOH_State @ state

waitforpoll:
 BL readUART @ read next
char

 @ switch(state = R7)
 CMP R7, #SOH_State @ are we
waiting for SOH?
 BNE AddrStateCheck @ no, check
address state
 CMP R0, #SOHChar @ did we
read an SOH?
 BNE waitforpoll @ no read
another character
 MOV R7, #ADDR_State @ yes switch
to address state
 B waitforpoll @ wait for
next character
AddrStateCheck:
 CMP R7, #ADDR_State @ are we
waiting for address?
 BNE EtxStateCheck @ no, check
ETX state
 CMP R0, #TermAddrChar @ is it our
address?
 BEQ gotaddr @ yes, goto
gotaddr
 MOV R7, #SOH_State @ no, go
back to SOH state
 B waitforpoll @ get next
char
gotaddr: MOV R7, #ETX_State @ got
address, so goto ETX state
 B waitforpoll @ get next
char

EtxStateCheck:
 CMP R0, #ETXChar @ did we get
an ETX char?
 BEQ gotetx @ yes, goto
gotetx

 MOV R7, #SOH_State @ no, go
back to SOH state
 B waitforpoll @ get next
char

gotetx:
@ received a poll, so send a response packet
 MOV R0, #SOHChar
 BL sendUART @ send SOH
 MOV R0, #TermAddrChar
 BL sendUART @ send
Address
 MOV R0, #STXChar
 BL sendUART @ send STX

 BL readTemp @ read the
temperature

 BL calcTempCelc @ convert to
degrees C

 LDR R1, =tempStr @ msg
template
 ADD R1, #6 @ after
Temp:
 BL itoa @ raw temp
value is still in R0

 LDR R5, =tempStr

@ Copy the msg string pointed to by R5 out the
UART
nextchar:LDRB R0, [R5]
 CMP R0, #0 @ String is
null terminated
 BEQ done @ Are we
done (at null)?

 BL sendUART @ No, then
send the character
 ADD R5, #1 @ Next
character
 B nextchar

@ Message is sent, so just need to send ETX
character
done:
 MOV R0, #ETXChar
 BL sendUART

@ This poll is finished, go back and wait for
another
 B loop @ loop
forever

.data
@ template for temperature message string
tempStr: .asciz "Temp: "

Listing	14-5 The main driving program

The CMakeLists.txt �ile for this project is presented in Listing 14-6.

cmake_minimum_required(VERSION 3.13)

set(PICO_BOARD pico2 CACHE STRING "Board type")

include(pico_sdk_import.cmake)
project(iot C CXX ASM)

set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(iot
 iot.S adctemp.S mmath.S muart.S
)

pico_enable_stdio_uart(iot 1)
pico_enable_stdio_usb(iot 0)

pico_add_extra_outputs(iot)

target_link_libraries(iot pico_stdlib)

Listing	14-6 CMakeLists.txt �ile for this project

Here the UART was used, since this connection is already available
to the Raspberry Pi; however, there are other options, such as wireless,
with some cost-versus-convenience trade-offs.

About	IoT,	Wi-Fi,	Bluetooth,	and	Serial
Communications
The Internet of Things (IoT) often refers to connecting microcontrollers
to the Internet directly. There are wireless versions of both the Pico 1
and Pico 2, the W versions, which add Wi-Fi and Bluetooth. These add a
standard radio module to either board, but unfortunately these
modules are proprietary and don’t document their interfaces publicly.
To use these, the vendor’s supplied SDK needs to be used, which is
integrated into the Pico-series SDK. There are plenty of examples of
using the SDK to communicate with the Internet. The easiest and best
support is via MicroPython.

The advantage of the UART serial protocol used is that the
microcontroller doesn’t need to know the Wi-Fi password to connect,
similarly if Bluetooth is used as a wireless alternative. If Wi-Fi is used,
be careful as if the microcontroller is stolen the Wi-Fi credentials can be
extracted from the ROM.

Having all the microcontrollers wired or wirelessly connected to the
server, instead of using the Internet, prevents a lot of security problems.
When the server they are connected with accesses the Internet, all

Internet access is handled by a computer with a secure full-featured
operating system such as Linux.

All these solutions are possible, and it comes down to trade-offs of
cost, ease of installation, convenience, and security requirements. Often
serial wired communications are simple, cheap, and secure and work in
an electrically noisy environment, like a factory. However, running a
wire to every microcontroller can be a problem for homeowners, who
don’t want to redo their drywall and prefer everything to be handled by
their home Wi-Fi.

Summary
This chapter used all the things learned so far to create a complete
Assembly Language program to read data from a device and then
communicate it to a server program for processing or logging. The
program used the hardware registers directly and didn’t call any Pico-
series SDK functions. Although Assembly Language is typically used to
code highly specialized functions that either require high performance
or need to utilize machine instructions that aren’t available from high-
level languages, it is worth noting that in the microcontroller world, it is
practical to write the entire program in Assembly Language.

At this point, it should be clear how to write Assembly Language
code for Pico-series chips. The fundamentals of writing basic programs
and interfacing with hardware integrated into the Pico-series were
covered.

Now go forth and experiment. The only way to learn programming
is by doing. Think up some Assembly Language projects. The RP2040
and RP2350 are �lexible devices that can interface to nearly anything
including any sensor or device that can be connected to the Arduino
and Raspberry Pi systems.

Exercises
1.

Change the program to report in degrees Fahrenheit rather than
degrees Celsius.

2. The function itoa isn’t safe, as it could overrun the provided buffer.

Change the routine to take the buffer size as a third parameter and

Change the routine to take the buffer size as a third parameter and
to ensure it doesn’t write past the end of the provided buffer.

3.
The Python program keeps adding to the msg variable until an ETX
character is received. Change the program to have a maximum
message length, which if exceeded will change the state back to
waiting for a SOH character. Why is this a good practice?

4.
Combine the formula for converting raw ADC to voltage with the
temperature formula in the RP2350	Datasheet to derive the
temperature formula.

5.
The simple protocol has no error checking. One technique is to add
an XOR checksum to the message. Simply XOR all the bytes of the
message together and include the checksum before the ETX
character. Implement this for the protocol. How to best ensure the
checksum isn’t one of the three special protocol characters?

6.
The simple protocol has no authentication. Should a terminal need
to supply authentication information? What are the pros and cons
of adding this?

7.
Typical temperatures are around room temperature or 20°C, two
digits positive. Set up some test cases for the itoa function to ensure
it works properly for negative temperatures. What is a good
selection of test cases to ensure it is working properly?

8.
In the initUART function, the baud rate is hard-coded to 115,200.
Change the routine to take the baud rate as a parameter and
perform the calculations explained in the RP2350	Datasheet to
con�igure the two baud rate registers correctly.

Note The calculation must consider the difference in the RP2040
versus RP2350 clock speed.

APPENDIX	A	ASCII	Character	Set
Here is the ASCII Character Set. The characters from 0 to 127 are
standard. The characters from 128 to 255 are taken from code page
437, which is the character set of the original IBM PC.

Dec Hex Char Description

0 00 NUL Null

1 01 SOH Start of Header

2 02 STX Start of Text

3 03 ETX End of Text

4 04 EOT End of Transmission

5 05 ENQ Enquiry

6 06 ACK Acknowledge

7 07 BEL Bell

8 08 BS Backspace

9 09 HT Horizontal Tab

10 0A LF Line Feed

11 0B VT Vertical Tab

12 0C FF Form Feed

13 0D CR Carriage Return

14 0E SO Shift Out

15 0F SI Shift In

16 10 DLE Data Link Escape

17 11 DC1 Device Control 1

18 12 DC2 Device Control 2

19 13 DC3 Device Control 3

20 14 DC4 Device Control 4

21 15 NAK Negative Acknowledge

22 16 SYN Synchronize

23 17 ETB End of Transmission Block

24 18 CAN Cancel

25 19 EM End of Medium

Dec Hex Char Description

26 1A SUB Substitute

27 1B ESC Escape

28 1C FS File Separator

29 1D GS Group Separator

30 1E RS Record Separator

31 1F US Unit Separator

32 20 space Space

33 21 ! Exclamation mark

34 22 " Double quote

35 23 # Number

36 24 $ Dollar sign

37 25 % Percent

38 26 & Ampersand

39 27 ' Single quote

40 28 (Left parenthesis

41 29) Right parenthesis

42 2A * Asterisk

43 2B + Plus

44 2C , Comma

45 2D - Minus

46 2E . Period

47 2F / Slash

48 30 0 Zero

49 31 1 One

50 32 2 Two

51 33 3 Three

52 34 4 Four

53 35 5 Five

54 36 6 Six

55 37 7 Seven

56 38 8 Eight

57 39 9 Nine

Dec Hex Char Description

58 3A : Colon

59 3B ; Semicolon

60 3C < Less than

61 3D = Equality sign

62 3E > Greater than

63 3F ? Question mark

64 40 @ At sign

65 41 A Capital A

66 42 B Capital B

67 43 C Capital C

68 44 D Capital D

69 45 E Capital E

70 46 F Capital F

71 47 G Capital G

72 48 H Capital H

73 49 I Capital I

74 4A J Capital J

75 4B K Capital K

76 4C L Capital L

77 4D M Capital M

78 4E N Capital N

79 4F O Capital O

80 50 P Capital P

81 51 Q Capital Q

82 52 R Capital R

83 53 S Capital S

84 54 T Capital T

85 55 U Capital U

86 56 V Capital V

87 57 W Capital W

88 58 X Capital X

89 59 Y Capital Y

Dec Hex Char Description

90 5A Z Capital Z

91 5B [Left square bracket

92 5C \ Backslash

93 5D] Right square bracket

94 5E ^ Caret/circum�lex

95 5F _ Underscore

96 60 ` Grave/accent

97 61 a Small a

98 62 b Small b

99 63 c Small c

100 64 d Small d

101 65 e Small e

102 66 f Small f

103 67 g Small g

104 68 h Small h

105 69 i Small i

106 6A j Small j

107 6B k Small k

108 6C l Small l

109 6D m Small m

110 6E n Small n

111 6F o Small o

112 70 p Small p

113 71 q Small q

114 72 r Small r

115 73 s Small s

116 74 t Small t

117 75 u Small u

118 76 v Small v

119 77 w Small w

120 78 x Small x

121 79 y Small y

Dec Hex Char Description

122 7A z Small z

123 7B { Left curly bracket

124 7C | Vertical bar

125 7D } Right curly bracket

126 7E ~ Tilde

127 7F DEL Delete

128 80 Ç

129 81 ü

130 82 é

131 83 â

132 84 ä

133 85 à

134 86 å

135 87 ç

136 88 ê

137 89 ë

138 8A è

139 8B ı̈

140 8C ı̂

141 8D ı̀

142 8E A�

143 8F A�

144 90 E�

145 91 æ

146 92 Æ

147 93 ô

148 94 ö

149 95 ò

150 96 û

151 97 ù

152 98 ÿ

153 99 O�

Dec Hex Char Description

154 9A U�

155 9B ¢

156 9C £

157 9D ¥

158 9E ₧

159 9F ƒ

160 A0 á

161 A1 ı́

162 A2 ó

163 A3 ú

164 A4 ñ

165 A5 N�

166 A6 ª

167 A7 °

168 A8 ¿

169 A9 ⌐

170 AA ¬

171 AB ½

172 AC ¼

173 AD ¡

174 AE «

175 AF »

176 B0 ░

177 B1 ▒

178 B2 ▓

179 B3 │

180 B4 ┤

181 B5 ╡

182 B6 ╢

183 B7 ╖

184 B8 ╕

Dec Hex Char Description

185 B9 ╣

186 BA ║

187 BB ╗

188 BC ╝

189 BD ╜

190 BE ╛

191 BF ┐

192 C0 └

193 C1 ┴

194 C2 ┬

195 C3 ├

196 C4 ─

197 C5 ┼

198 C6 ╞

199 C7 ╟

200 C8 ╚

201 C9 ╔

202 CA ╩

203 CB ╦

204 CC ╠

205 CD ═

206 CE ╬

207 CF ╧

208 D0 ╨

209 D1 ╤

210 D2 ╥

211 D3 ╙

212 D4 ╘

213 D5 ╒

214 D6 ╓

215 D7 ╫

Dec Hex Char Description

216 D8 ╪

217 D9 ┘

218 DA ┌

219 DB █

220 DC ▄

221 DD ▌

222 DE ▐

223 DF ▀

224 E0 α

225 E1 ß

226 E2 Γ

227 E3 π

228 E4 Σ

229 E5 σ

230 E6 μ

231 E7 τ

232 E8 Φ

233 E9 Θ

234 EA Ω

235 EB δ

236 EC ∞

237 ED φ

238 EE ε

239 EF ∩

240 F0 ≡

241 F1 ±

242 F2 ≥

243 F3 ≤

244 F4 ⌠

245 F5 ⌡

246 F6 ÷

247 F7 ≈

Dec Hex Char Description

248 F8 °

249 F9 ∙

250 FA ⋅

251 FB √

252 FC ⁿ

253 FD 2

254 FE █

255 FF

Appendix	B	Assembler	Directives
This appendix lists a useful selection of GNU Assembler directives. It
includes all the directives used in this book and a few more that are
commonly used.

Directive Description

.align Pad the location counter to a particular storage boundary.

.ascii De�ines memory for an ASCII string with no NULL terminator.

.asciz De�ines memory for an ASCII string and adds a NULL terminator.

.byte De�ines memory for bytes.

.data Assembles following code to the end of the data subsection.

.double De�ines memory for double-precision �loating-point data.

.dword De�ines storage for 64-bit integers.

.else Part of conditional assembly.

.elseif Part of conditional assembly.

.endif Part of conditional assembly.

.endm End of a macro de�inition.

.endr End of a repeat block.

.equ De�ines values for symbols.

.�ill De�ine and �ill some memory.

.�loat De�ine memory for single-precision �loating-point data.

.global Make a symbol global, needed if reference from other �iles.

.hword De�ines memory for 16-bit integers.

.if Marks the beginning of code to be conditionally assembled.

.include Merge a �ile into the current �ile.

.int De�ine storage for 32-bit integers.

.long De�ine storage for 32-bit integers (same as .int).

.macro De�ine a macro.

.octa De�ines storage for 64-bit integers.

.quad Same as .octa.

.rept Repeat a block of code multiple times.

.set Set the value of a symbol to an expression.

Directive Description

.short Same as .hword.

.single Same as .�loat.

.text Generate following instructions into the code section.

.word Same as .int.

Appendix	C	Binary	Formats
This appendix describes the basic characteristics of the data types used
in this book.

Integers
The following table provides the basic integer data types used. Signed
integers are represented in the two’s complement form.

Table	C-1 Size, alignment, range, and C type for the basic integer types

Size Type Alignment	in
Bytes

Range C	Type

8 Signed 1 –128 to 127 signed char

8 Unsigned 1 0 to 255 char

16 Signed 2 –32,768 to 32,767 short

16 Unsigned 2 0 to 65,535 unsigned
short

32 Signed 4 –2,147,483,648 to 2,147,483,647 int

32 Unsigned 4 0 to 4,294,967,295 unsigned int

64 Signed 8 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

long long

64 Unsigned 8 0 to 18,446,744,073,709,551,615 unsigned long
long

Floating	Point
The RP2040/RP2350 �loating-point routines use the IEEE-754
standard for representing �loating-point numbers. All �loating-point
numbers are signed.

Addresses
All addresses or pointers are 32-bit.

Table	C-2 Size, positive range, and C type for �loating-point numbers

Size Range C	Type

32 1.175494351e-38 to 3.40282347e+38 �loat

Size Range C	Type

64 2.22507385850720138e-308 to 1.79769313486231571e+308 double

Table	C-3 Size, range, and C type of a pointer

Size Range C	Type

32 0 to 4,294,967,295 void *

Appendix	D	The	ARM	Instruction	Set
This appendix lists the core ARM Cortex-M-series 32-bit instruction set,
with a brief description of each instruction.

Instruction Description

ADC,	ADD Add with Carry, Add

ADR Load program or register-relative address (short range)

AND Logical AND

ASR Arithmetic Shift Right

B Branch

BIC Bit Clear

BKPT Software breakpoint

BL Branch with Link

BLX Branch with Link, change instruction set

BX Branch, change instruction set

CMN,	CMP Compare Negative, Compare

CPSID Disable interrupts

CPSIE Enable interrupts

DMB,	DSB Data Memory Barrier, Data Synchronization Barrier

EOR Exclusive OR

ISB Instruction Synchronization Barrier

LDM Load Multiple Registers

LDR Load Register with Word

LDRB Load Register with Byte

LDRH Load Register with Halfword

LDRSB Load Register with Signed Byte

LDRSH Load Register with Signed Halfword

LSL,	LSR Logical Shift Left, Logical Shift Right

MOV Move

MRS Move from PSR to Register

MSR Move from Register to PSR

MUL Multiply

Instruction Description

NEG Two’s complement

NOP No Operation

ORR Logical OR

PUSH,	POP PUSH registers to stack, POP registers from stack

REV Reverse bytes in word

REV16,	REVSH Reverse bytes in halfword

ROR Rotate Right Register

SBC Subtract with Carry

SEV Set Event

STM Store Multiple Registers

STR Store Register with Word

STRB Store Register with Byte

STRH Store Register with Halfword

SUB Subtract

SVC Supervisor Call

SXTB,	SXTH Signed extend

TST Test

UXTB,	UXTH Unsigned extend

WFE,	WFI Wait for Event, Wait for Interrupt

YIELD Yield

Appendix	E	Answers	to	Exercises
This appendix has answers to selected exercises. For program code,
check the online source code at the Apress GitHub site.

Chapter	2

1. 0100 1101 0010, 0x4d2

Chapter	4

1. 177 (0xb1), 233 (0xe9)
2. -14, -125
3. 0x78563412
4. 0x118
5. 0x218

Chapter	6
2. The LDR instruction either provides an offset to the PC directly from
the address or creates the address in the code section using indirection
from the PC to load this value.

Chapter	9

1. 0x40044000, i2c.h
2. The more pins, the larger the size of the
board. This is a trade-off to keep the board small
but still provide a great deal of flexibility.

Chapter	10

1. 65104, 78,125
2. 62,500,000Hz or 62.5MHz on an RP2040

Index
A
ADC

See Analog-to-digital converter (ADC)
ADD instruction 26
Addition instruction 76
Addresses 326
Add with carry 78, 79
Advanced peripheral bus (APB) 178
Analog-to-digital converter (ADC) 283–285
APB

See Advanced peripheral bus (APB)
Arithmetic shift right (ASR) 74, 81
ARM instruction set 327
ARM processor

components 18
de�ined 17
designers 18
instruction format 26–28
manufacture chips 18
RISC 17

ASCII character set 311
ASR

See Arithmetic shift right (ASR)
Assembler directives 323
AssemblerTemplate 171
Assembly language 1, 159

ARM instruction format 26–28
asm statement 170
computers and numbers 21–24
CPU registers 25, 26
data statement 41
embedding code 169
GCC assembler 29, 30
goals 24

instr and outstr registers 172
instructions 40
parameters 171
Pico-series C/C++ SDK 35–38
program logic 41, 42
reasons 19–21
reverse engineering 43–46
routines 167, 168
RP2040/RP2350 memory 28, 29
starting comment 38, 39
starting program 39
Visual Studio Code 30–35

B
BBC microcomputer 17
Bi-Endian 71
Big-Endian 70
Big-vs. little-Endian 70–72
Bluetooth 307
Branch and Exchange instruction (BX instruction) 135, 142
Branch instructions 93, 94, 108, 141–143

C
Calculation lanes 247
Called function 140
Calling routine 140
Carry �lag 73
CISC

See Complex instruction set computer (CISC)
Clobbers 171
Clock divider 210, 211
CMake 49–53
CMP instruction 94
Complex instruction set computer (CISC) 17
Concurrency 181–183
Conditional logic 91
Condition �lags 92
Control register 292

CPSR
See Current program status register (CPSR)

CPU registers 25, 26
Current program status register (CPSR) 26, 73, 78, 79, 92, 93
C wrapper functions 165

D
Data types

�loating-point 326
integers 325

Design patterns 101, 102
Digital signal processor (DSP) 244
Division 243, 244

E
EDVAC

See Electronic Discrete Variable Automatic Computer (EDVAC)
Electronic Discrete Variable Automatic Computer (EDVAC) 67

F
Factorials 264
Fibonacci numbers 264
FIFO

See First-in-�irst-outs (FIFOs)
First-in-�irst-outs (FIFOs) 259, 261
Floating-point 251, 252
For loop 95, 96
FPU registers

arithmetic operations 253
C and printf 256, 257
instructions 252
sample program 253–256

Functions 133
branch with link 135, 136
call algorithm 140, 141
myfunc 136, 137
parameters 138

G
GDB

See GNU debugger (GDB)
GNU debugger (GDB)

breakpoint command 60, 63
commands 65
debugging 57, 58
de�ined 55
disassemble program 61
memory 63
registers command 61
running openocd server 58
running program 59
SDK code 60
VS code extension 55, 56

GNU Make 53
GotoLabels 171
Goto statement 91

H
Hardware memory-mapped registers 175
Hardware registers 180–183, 245, 272
HelloWorld program 31, 35
Hexadecimal digits 22
Host computer 2, 5, 11

I,	J,	K
If/then/else statement 97, 98
Indirect memory access 29
Inline function 165
InputOperands 171
Input shift register (ISR) 205
Instruction pipeline 28
Integers to ASCII conversion

AND 106
decimal 107
de�ined 102

expressions in immediate constants 107
printing 104
pseudo-code 103
registers and updating memory 106
storing register to memory 107

Internet of Things (IoT) 307
Interpolation

adding array of integers 245–247
algorithms 244
DSPs 244
�loating-point 251, 252
hardware registers 245
loading and saving FPU registers 252–257
numbers 248–250

Interpolator 247
Interprocessor communications 261, 262
Interrupts

calling process 220
internal 221, 222
overview 220
priorities 222, 223, 227
processor state 225, 226
RP2040 vs. RP2350 221
SDK 239
SVCall 238
timer, �lashing LEDs

alarm interrupt handler 228
complete program 231–238
handler and enabling IRQ0 230
RP2040 alarm 229, 230
state variable 228

Interrupt vector table (IVT) 220, 223–225
IoT

See Internet of Things (IoT)
ISR

See Input shift register (ISR)

L
Last in �irst out (LIFO) 134
LDR instruction 116, 118, 124
LIFO

See Last in �irst out (LIFO)
Line control register 292
Link register (LR) 135
Little-Endian 71, 72
Load–store architecture 111
Load/store instructions 119
Logical operators

AND 100
BIC 101
combination of input bits 99
EOR 100
MVN 101
ORR 100
tools 99
TST 101

Logical shift left (LSL) 74, 81
Logical shift right (LSR) 74, 81
Long division algorithm 108
Loops

For loop 95, 96
While loop 96

LR
See Link register (LR)

M
Machine learning 248
Macros

capabilities 151
de�ined 154
include directive 154
labels 155
reasons 156
uppercase program 151, 153

Magic numbers 292
Memory 63

addresses 111
RP2040/RP2350 28, 29

Memory contents
align data 115
.byte statement 112
converting uppercase 124–130
data types 113
directives 112, 113
escape character sequences 114
formats 112
indexing 121–124
loading and storing multiple registers 130, 131
loading data 118–120
load register 116

GPIO pins 117
operating system 117
PC-relative addressing 118

mechanisms 114
numbers 112
pre�ix operators 113
small read-only data access 120, 121
store register 124

Microcontrollers 2, 5, 42, 159, 241, 288, 307
Minicom program 37, 38
Mnemonics 95
MOV/ADD/Shift example 82–88
MOV instruction

move immediate 75
moving data from one register to another 76

M-series CPUs 18, 24
Multiplication 242, 243
Multiprocessing

complete program 265–270
factorials 264
features 259

Fibonacci numbers 264
interprocessor mailboxes 261, 262
power saving 259, 260
printf statement 271
routines, interprocessor FIFO mailbox 270, 271
SDK 281
second CPU cores 262, 263
spinlocks 272–280

Multi-tasking operating systems 6

N
Nested vector interrupt controller (NVIC) 220
Nesting function calls 136, 137
NMI interrupt 222
NVIC

See Nested vector interrupt controller (NVIC)

O
One’s complement 70
OSR

See Output shift register (OSR)
OutputOperands 171
Output shift register (OSR) 199

P,	Q
Pad isolation 184, 185
Pads 183
PC

See Program counter (PC)
PC-relative addressing 118
PIO

See Programmable I/O (PIO)
Pointers 326
Print statements 54, 55
Program counter (PC) 29, 117
Programmable I/O (PIO) 4

architecture 194–196
block diagram 194, 195

con�iguration options 215, 216
�lashing LEDs 197–203
IN 205
instruction memory slots 194
instructions and operands 196, 197
IRQ 208, 209
JMP 204
MOV 207, 208
of�load processing 193
OUT 205, 206
PULL 207
PUSH 206
SET 209
side-set 213, 215
state machines 193
timing

clock divider 210, 211
delay operand 211–213

Wait 204

R
Raspberry Pi OS’s galculator 23
Raspberry Pi Pico series

assumption 283
calculator 69, 70
C/C++ SDK 35–38
C header �iles 177, 178
converting integers to ASCII 298–302
debugging 6, 7, 9
external pins 178
hardware I/O capabilities 159
hardware peripheral functions 179
helper script �iles 13, 14
home-brewed communications protocol 288, 289
host computer 5
interrupt sources

See Interrupts

main program 302–306
memory map 175, 176
modules 4
pins 18, 19, and 20 178
prerequisite skills 12
RP2040 and RP2350 chips 3–5
SDK 11, 307
server side protocol 289–291
setting pin function 180, 181
software installation 10
soldering and wiring 7, 8
stacks 134, 135
temperature sensors 284–288
UART 283, 292–298, 307
Visual Studio Code 10

Reduced instruction set computer (RISC) 17, 24, 25
Register destination (Rd) 77
Registers

ASCII characters 102
CPU 25, 26
�loating-point 251
interpolation 245, 247
{reglist} parameter 134
rules 139
shift and rotate 72–75
SIO pins 182
storing memory 107

Resistors 161
Return values 138
Reverse engineering 43–46
RISC

See Reduced instruction set computer (RISC)
Rotate right (ROR) 74, 81
RP2040/RP2350 chips

brands 3
competitors’ microcontrollers 4
custom program 6

datasheet 250
high-level memory map 176
interpolator coprocessors 244
interrupts 221
I/O hardware components 193
mathematical components 241, 242
memory 28, 29
power processing 5
programming 3

S
SDK

See Software Developer’s Kit (SDK)
Serial communications 293, 307
Shift and rotate registers

carry �lag 73
cases

arithmetic shift right 74
logical shift left 74
logical shift right 74
rotate right 74
rotate right extend 75

de�ined 72
examples 81
instructions 80
32 bits of register 81, 82

Side-set 213, 215
Silicon chips 17
SIO pin

complete program 187, 188, 190, 191
con�iguration 185
initialization 185
turning on/off 186

Software Developer’s Kit (SDK) 11, 19, 50, 239, 281
�lashing LEDs 162–167

Spinlocks
code to lock 272

code to release 273
hardware registers 272
memory table 273–275, 277–280
overview 272
shared resources 272

Stack pointer (SP) 134, 148, 224
Stacks

de�ined 133
frames

example 150, 151
PUSH/POP 149
symbols 151
variables 149

Pico-series 134, 135
State machine 302
Store byte (STRB) instruction 107
STR instruction 124
Subtraction 80
Supercomputers 18
Supervisor call (SVC) 238
SVC

See Supervisor call (SVC)
System on a chip (SoC) 4

T
Temperature sensors 284–288
Thumb instructions 24
Two’s complement 67–69

U
Unconditional branch 91
Unsigned integers 67
Uppercase function 124–130, 143–148

V
Visual Studio Code 10–12, 30–35, 55

W

While loop 96
Wi-Fi 307
Wire �lashing LEDs

circuitry 160
GPIO pin 160
resistors 161
schematics 161
SDK functions 162–167

X,	Y,	Z
X factor 142
XOR register 183

	Maker Innovations Series
	RP2040 Assembly Language Programming
	Introduction
	Introduction to the Second Edition
	Source Code Location

	Acknowledgments
	Table of Contents
	About the Author
	About the Technical Reviewer
	1. How to Set Up the Development Environment
	About the Pico Families
	About the Raspberry Pi Pico-series
	About the Host Computer
	About the Raspberry Pi Debug Probe
	How to Solder and Wire
	How to Install Software
	Using Visual Studio Code
	Installing the Full SDK
	A Simple Program to Ensure Things Are Working
	Create Some Helper Script Files
	Summary

	2. The First Assembly Language Program
	Ten Reasons to Use Assembly Language
	Computers and Numbers
	ARM Assembly Instructions
	CPU Registers
	ARM Instruction Format

	RP2040/RP2350 Memory
	About the GCC Assembler
	Hello World
	With Visual Studio Code
	With the Pico-series C/C++ SDK

	Our First Assembly Language File
	About the Starting Comment
	Where to Start
	Assembly Instructions
	Data
	Program Logic

	Reverse Engineering the Program
	Summary
	Exercises

	3. How to Build and Debug Programs
	CMake
	GNU Make
	Print Statements
	GDB
	Using the VS Code Extension
	Preparing to Debug
	Beginning GDB

	Summary
	Exercises

	4. How to Load and Add
	About Negative Numbers
	About Two’s Complement
	About the Raspberry Pi OS Calculator
	About One’s Complement

	Big- versus Little-Endian
	About Bi-Endian
	Pros of Little-Endian
	Cons of Little-Endian

	How to Shift and Rotate Registers
	About the Carry Flag
	Basics of Shifting and Rotating
	Logical Shift Left
	Logical Shift Right
	Arithmetic Shift Right
	Rotate Right
	Rotate Right Extend

	How to Use MOV
	Move Immediate
	Moving Data from One Register to Another

	ADD/ADC
	Add with Carry

	SUB/SBC
	Shifting and Rotating
	Loading All 32 Bits of a Register

	MOV/ADD/Shift Example
	Summary
	Exercises

	5. How to Control Program Flow
	Unconditional Branch
	About the CPSR
	Branch on Condition
	About the CMP Instruction
	Loops
	FOR Loops
	WHILE Loops

	If/Then/Else
	Logical Operators
	AND
	EOR
	ORR
	BIC
	MVN
	TST

	Design Patterns
	Converting Integers to ASCII
	Using Expressions in Immediate Constants
	Storing a Register to Memory
	Why Not Print in Decimal?

	Performance of Branch Instructions
	Summary
	Exercises

	6. Thanks for the Memories
	How to Define Memory Contents
	How to Align Data

	How to Load a Register
	How to Load a Register with an Address
	How to Build the Address Directly
	PC-Relative Addressing

	How to Load Data from Memory
	Optimizing Small Read-Only Data Access
	Indexing Through Memory

	How to Store a Register
	How to Convert to Uppercase
	How to Load and Store Multiple Registers
	Summary
	Exercises

	7. Calling Functions and Using the Stack
	About Stacks on the Pico-series
	How to Branch with Link
	About Nesting Function Calls
	About Function Parameters and Return Values
	How to Manage the Registers
	Summary of the Function Call Algorithm
	More on the Branch Instructions
	About the X Factor

	Uppercase Revisited
	About Stack Frames
	Stack Frame Example
	How to Define Symbols

	How to Create Macros
	About the Include Directive
	How to Define a Macro
	About Labels
	Why Macros?

	Summary
	Exercises

	8. Interacting with C and the SDK
	How to Wire Flashing LEDs
	How to Flash LEDs with the SDK

	How to Call Assembly Routines from C
	How to Embed Assembly Code Inside C Code
	Summary
	Exercises

	9. How to Program the Built-In Hardware
	About the Pico-series Memory Map
	About C Header Files
	About the Raspberry Pi Pico Pins
	How to Set a Pin Function

	About Hardware Registers and Concurrency
	About Programming the Pads
	About RP2350 Pad Isolation

	How to Initialize SIO
	How to Turn a Pin On/Off
	The Complete Program
	Summary
	Exercises

	10. How to Initialize and Interact with Programmable I/O
	About the PIO Architecture
	About the PIO Instructions
	Flashing the LEDs with PIO
	PIO Instruction Details and Examples
	JMP
	WAIT
	IN
	OUT
	PUSH
	PULL
	MOV
	IRQ
	SET

	About Controlling Timing
	About the Clock Divider
	About the Delay Operand

	About Side-Set
	More Configurable Options
	Summary
	Exercises

	11. How to Set and Catch Interrupts
	Overview of the Pico-series Interrupts
	About the RP2040 versus the RP2350
	About the Pico-series’ Interrupts
	About the Interrupt Vector Table
	About Saving Processor State
	About Interrupt Priorities

	Flashing LEDs with Timer Interrupts
	About the RP2040 Alarm Timer
	Setting the Interrupt Handler and Enabling IRQ0
	The Complete Program

	About the SVCall Interrupt
	Using the SDK
	Summary
	Exercises

	12. Multiplication, Division, and Floating Point
	Multiplication
	Division
	Interpolation
	Adding an Array of Integers
	Interpolating Between Numbers

	Floating Point
	Defining Floating-Point Numbers
	About Floating-Point Registers

	Loading and Saving FPU Registers
	Basic Arithmetic
	Sample Floating-Point Program
	Some Notes on C and printf

	Summary
	Exercises

	13. Multiprocessing
	About Saving Power
	About Interprocessor Mailboxes
	How to Run Code on the Second CPU
	A Multiprocessing Example
	About Fibonacci Numbers
	About Factorials
	The Complete Program

	About Spinlocks
	Regulating Access to a Memory Table

	A Word on the SDK
	Summary
	Exercises

	14. How to Connect Pico to IoT
	About the Pico-series Built-In Temperature Sensor
	About Home-Brewed Communications Protocol
	About the Server Side of the Protocol
	About the Pico-series UART
	Converting Integers to ASCII
	Viewing the Main Program
	About IoT, Wi-Fi, Bluetooth, and Serial Communications
	Summary
	Exercises

	APPENDIX A ASCII Character Set
	Appendix B Assembler Directives
	Appendix C Binary Formats
	Integers
	Floating Point
	Addresses

	Appendix D The ARM Instruction Set
	Appendix E Answers to Exercises
	Chapter 2
	Chapter 4
	Chapter 6
	Chapter 9
	Chapter 10

	Index

