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Introduction

There is an explosion of DIY electronics projects, largely fueled by
Arduino-based microcontrollers and Raspberry Pi computers.
Electronics projects have never been easier to build, with hundreds of
inexpensive modular components to choose from. People design robots,
home monitoring and security systems, game devices, musical
instruments, audio systems, and lots more. The Raspberry Pi Pico is the
Raspberry Pi Foundation’s entry into the Arduino-style microcontroller
market. A regular Raspberry Pi computer runs Linux and typically costs
from $35 to $100 depending on memory and accessories. The
Raspberry Pi Pico costs $4 and doesn’t run an operating system.

To power the Raspberry Pi Pico, the Raspberry Pi Foundation
designed a custom System on a Chip (SoC), called the RP2040,
containing dual ARM Cortex-M0+ CPUs along with a raft of device
controller components. This combination of a powerful CPU and ease of
integration has made this a great choice for any DIY project. Further,
Raspberry sells the RP2040 chips separately, and other companies such
as Seeed Studio, Adafruit, and Pimoroni are selling their own versions
of this microcontroller with extra built-in features like Bluetooth or Wi-
Fi. The RP2040 chips can even be purchased for approximately $1 each
to build your own board.

At the basic level, how are these microcontrollers programmed?
What provides the magical foundation for all the great projects that
programmers build with them? Raspberry provides a Software
Developer’s Kit (SDK) for C programmers as well as support for
programming in MicroPython. This book answers these questions and
delves into how these are programmed at the bare metal level and
provides insight into the RP2040’s architecture.

Assembly Language is the native, lowest-level way to program a
computer. Each processing chip has its own Assembly Language. This
book covers programming the ARM Cortex-M0+ 32-bit Processor. To
learn how a computer works, learning Assembly Language is a great
way to get into the nitty-gritty details. The popularity and low cost of
microcontrollers like the Raspberry Pi Pico provide ideal platforms to
learn advanced concepts in computing.



Even though all these devices are low-powered and compact,
they’re still sophisticated computers with a multi-core processor,
programmable I/0 processors, and integrated hardware controllers.
Anything learned about these devices is directly relevant to any gadget
with an ARM processor that by volume is the number one processor on
the market today.

In this book, how to program ARM Cortex-M0+ processors at the
lowest level, operating as close to the hardware as possible, is covered.
How to do the following will be learned:

e Format instructions and combine them into programs, as well as the
formats of operative binary data.

e Program the built-in programmable 1/0, division, and interpolation
COpProcessors.

* Control the integrated hardware devices by reading and writing to
the hardware control registers directly.

e Interact with the RP2040 SDK.

The simplest way to learn these tasks is with a Raspberry Pi Pico
connected to a Raspberry Pi running the Raspberry Pi OS, a version of
Linux. This provides all the tools needed to learn Assembly Language
programming. All the software required for this book is open source
and readily available on the Raspberry Pi.

This book contains many working programs to play with, use as a
starting point, or study. The only way to learn programming is by doing,
so don’t be afraid to experiment as it is the only way to learn.

Even if Assembly programming isn’t used in day-to-day life,
knowing how the processor works at the Assembly Language level and
the low-level binary data structures will make for better programming
in all other areas. Knowing how the processor works will translate to
writing more efficient C code and can even help with Python
programming.

Enjoy this introduction to Assembly Language. Learning it for one
processor family helps with learning and using any other processor
architectures encountered throughout a programmer’s career.

Introduction to the Second Edition



Since the release of the first edition, the Raspberry Pi Organization has
released an updated version of their custom chip, namely, the RP2350.
Then, based on the RP2350 is the Raspberry Pi Pico 2. As a result, this
book often refers to the Pico-series to cover both the Pico 1 and Pico 2.
The RP2350 is based on the newer ARM Cortex M33, which runs faster,
has more memory, and includes a single-precision floating-point unit.

Over the same time period, Raspberry has updated their C/C++
SDK, with the most notable addition being to the Visual Studio (VS)
Code extension—a popular and productive way to develop software for
the Raspberry Pi Pico-series. Some of the main features in this addition
include

1.
Instructions to using Visual Studio Code

How to program the RP2350 floating-point unit

How to use some advanced M33 instructions like the division
instructions

How to enable the pads for the RP2350 due to the new electrical
isolation feature

How to perform debugging via the Raspberry Pi Debug Probe

Source Code Location

The source code for the example code in the book is located on the
Apress GitHub site at the following URL:
https://github.com/Apress/RP2040-Assembly—
Language—-Programming-—Second-Edition
The code is organized by chapter and includes answers to the
programming exercises.
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Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub via the book’s
product page, located at www.apress.com/979-8-8688-2201-8. For
more detailed information, please visit

https://www.apress.com/gp/services/source-code.
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This chapter is concerned with physically setting up the Raspberry Pi
Pico 2 on a breadboard and wiring it up to a host computer to
effortlessly program and debug programs, as well as hooking up other
components as they’'re encountered. The Getting started with Raspberry
Pi Pico-series guide (from the Raspberry Pi Organization’s website) is
an excellent reference on how to do these fundamental tasks. That
content is not duplicated here; instead, the important parts that are
required for Assembly Language programming are pointed out to
debug and play with the sample programs in this book.


https://doi.org/10.1007/979-8-8688-2202-5_1

To run most of the programs in this book, the following equipment
is needed:

e A Raspberry Pi Pico (1 or 2)

A Raspberry Pi Debug Probe

An electronics breadboard

Pins to attach the Pico to the breadboard
Miscellaneous connecting wires

A selection of LEDs

A soldering iron and solder or an “H” series Pico

A Raspberry Pi 4 or 5 running the Raspberry Pi OS

About the Pico Families

Microcontrollers like the Raspberry Pi Pico 2 are typically utilized as
the brains for smart devices, like microwave ovens, dishwashers, home
security systems, weather stations, or irrigation monitors and
controllers. At best they have a small display and perhaps a couple of
buttons for taking commands; however, they are still fully functioning
computers. The programs that run on them can be quite powerful and
sophisticated. Since microcontrollers usually don’t have a keyboard,
mouse, or monitor, their programs are developed on a regular
computer, known as a host computer, and then uploaded to the
microcontroller to test and finally deploy them.

The Raspberry Pi Organization has two families of microcontrollers:

e The Pico 1 family: Built around Raspberry’s RP2040 ARM CPU
e The Pico 2 family: Built around Raspberry’s RP2350 ARM CPU

Each of these families consists of various models, where a “W” after
the name indicates wireless support including Wi-Fi and Bluetooth and
an “H” after the name indicates pre-soldered headers. The four digits
after the RP indicate the number and type of CPU cores along with the
amount of memory.

When reading this book, there could well be additional members in
this family of processors; however, most of the content will apply to
these as well.

Not only are the RP2040 and RP2350 chips the heart of the
Raspberry Pi Pico families, but Raspberry also sells these chips to other



manufacturers, including Adafruit, Arduino, Seeed Studio, SparkFun,
and Pimoroni. These other companies produce boards like the
Raspberry Pi Picos but with different feature sets, for instance, in
different form factors or with different connectors to easily integrate
into other modular systems.

In this book, when the RP2040 or RP2350 is referred to, it applies to
all the brands of RP2040- or RP2350-based boards. However, in some
cases a specific board is talked about to discuss Wi-Fi or a specific
wiring connection for one board.

Note The RP2350 contains two RISC-V CPU cores in addition to the
two ARM cores. This book covers how to program the ARM CPUs in
ARM Assembly Language. The RISC-V cores are a different Assembly
Language and require a separate book such as RISC-V Assembly
Language Programming by Stephen Smith also from Apress.

Programming the RP2040 or RP2350 in Assembly Language is the main
emphasis of this book, but this is best done by studying real working
programs. To do this, the microcontroller needs to be connected to
various pieces of hardware. This way programs that perform useful
tasks can be seen, and all the flexible and powerful features of the
RP2040/RP2350 can be learned including how to connect to external
sensors, controllers, and communication channels. To begin, a
Raspberry Pi Pico 2 is set up on an electronics breadboard, so it can
easily be wired to various devices.

About the Raspberry Pi Pico-series

The heart of the Raspberry Pi Pico-series is a chip developed by
Raspberry and ARM. There are now two flavors of this chip, the older
RP2040 and the newer RP2350. Each chip is a System on a Chip (SoC)
that contains dual-core ARM Cortex CPUs, SRAM, a USB port, and
support for several hardware devices. Compared with a full computer
like the regular Raspberry Pi, the Raspberry Pico-series lacks a video
output port, an operating system, and connectors for a keyboard and
mouse. But it is possible to connect displays and input devices to the
Raspberry Pi Pico through its GPIO pins. The specialty connections and



input devices aren’t used for general-purpose computing; rather, they
solve specific problems, such as powering a vending machine or
monitoring a greenhouse.

Unlike the CPUs found in desktop and laptop computers, the
RP2040/RP2350 doesn’t support advanced modules like a vector
processing unit, a virtual memory controller, or a graphic processing
unit. However, one thing it has that regular CPUs lack is a set of eight
programmable /0 (PIO) coprocessors. These P10s have their own
Assembly Language and can handle many I/0 protocols and tasks
independent of the two CPU cores. These are covered in Chapter 10. If a
Pico-series board is already wired up and how to download and debug
C programs is understood, then skip ahead to Chapter 2.

The RP2040/RP2350 may look underpowered when comparing it
with a modern Intel, AMD, or ARM processor, but for the price it is quite
a powerful computer. Table 1-1 compares the RP2040 and RP2350 with
some older and newer computers as well as competitors’
microcontrollers.

Table 1-1 Comparison of the processing power of the RP2040 and RP2350

Computer CPU Speed (MHz) | Memory (kB) | Bits | Cores
Apple II MOS 6502 |1 48 8 1

IBM PC Intel 8088 | 4.77 640 16 |1
Arduino Nano R4 |ARM M4 |48 32 32 |1
Arduino Due ARM M3 |84 96 32 |1
RP2040 ARM MO+ | 133 264 32 |2
RP2350 ARM M33 |150 520 32 |2

Pi Zero ARM A53 [1024 524,288 32 |1

Pi5 ARM A76 |2400 16,777,216 64 |4
About the Host Computer

Since microcontrollers don’t have a keyboard, a display, or even an
operating system, their programs are written on a host computer. For
RP2040/RP2350- based microcontrollers, this could be on a MacOS,
Windows, or Linux-based computer. The Raspberry Pi Pico-series



documentation has instructions on how to connect them to all these
platforms. The easiest solution is to use a Raspberry Pi 5 as the host
versus using a Windows or Mac computer. Raspberry has made this
easy with a complete installation script and clear instructions on how
to wire the Raspberry Pi 5 and Raspberry Pi Pico-series together.

About the Raspberry Pi Debug Probe

USB ports are a wonderful invention because they allow all sorts of
devices to be easily connected. Raspberry Pi Pico-series boards have a
USB port that connects to the host computer. This permits programs to
be downloaded to the Pico-series board to run and lets messages return
to the host computer. This is great, but there is a problem when a
program needs to be debugged. For a USB connection to work properly,
the CPU must continually communicate with it, or the device becomes
disconnected. When debugging a program, the debugger needs to stop
the program executing so that the registers and memory can be
examined. On full computers with multi-tasking operating systems, this
isn’t a problem as other programs maintain the USB ports while the
program being developed is debugged. But beware that on the
Raspberry Pi Pico-series board, there is only one program running, so
when the debugger stops this program, it stops everything on the
board.

The solution to this problem is to not use the USB port for
debugging; instead, there are separate debug pins for the debugger to
control the board and serial communications via a UART for messaging.
The serial communications ports don’t require continual attention, so
don’t react when the CPU is stopped. In the first edition of this book,
this required wiring pins from a Raspberry Pi 4’s GPIO pins to the
Raspberry Pi Pico’s debug pins and UART pins. This was cumbersome
and presented a problem for programmers wanting to use a regular
Windows, MacOS, or Linux computer as their host computer.

To solve this problem, Raspberry invented the Raspberry Pi Debug
Probe. This is a device containing an RP2040 chip running a custom
program whose job is to mediate between the Raspberry Pi Pico-series
debug and UART pins and the host computer’s USB port. The processor
on the Debug Probe keeps the USB connection alive and translates the



data between the host’s USB connection and the Pico’s debug and serial
ports. With this new feature, it’s easy to develop and debug programs
from any Windows, MacOS, or Linux-based computer for the Raspberry
Pi Pico-series. This makes wiring up the Pico-series board to a
Raspberry Pi 5 easier as well.

This book will assume the use of a Raspberry Pi Debug Probe;
however, feel free to follow Raspberry’s instructions for other possible
solutions.

How to Solder and Wire

It is possible to get by without doing any soldering if purchasing the “H”
version of the Raspberry Pi Pico 1 or 2, which has header pins pre-
soldered to the board making it ready to press into an electronics
breadboard. Similarly, with a Raspberry Pi Debug Probe, soldering to
the debug pins can sometimes be avoided. One way or another, the
Raspberry Pi Pico needs to be connected to external devices. Without
this, programs can be downloaded to the Pico-series, the onboard LED
can be flashed, and data can be sent back out the USB port to the host
computer. However, even to debug a program, some external
connections are required.

Often the “H” series Picos with the pre-soldered headers are sold
out or are sometimes a bit expensive just to save some soldering. The
easiest way to experiment with a Pico is to have it connected to an
electronics breadboard, which requires headers attached to the board
either included or hand soldered.

Typically, a new Pico-series board would be soldered into a final
project directly. At $4 each (at the time of this writing), there isn't a
significant overhead in having a development board and adding new
boards to the package when finished. To perform debugging requires
soldering pins to the three debugging connections on the end of the
board, if they didn’t come pre-installed. The minimum wiring needed
are the following four connections between the Pico and the Raspberry
Pi 5:

1.
A micro-USB cable connecting the Pico-series to the host computer



2. A micro-USB cable connecting the Raspberry Pi Debug Probe to the
host computer

The three Pico-series debug pins connected to the Raspberry Pi
Debug Probe

Three pins connecting a serial port on the Pico-series to the
Raspberry Pi Debug Probe

Please refer to Getting started with Raspberry Pi Pico-series for the
full details.

Don'’t fear soldering; it is quite simple and fun. The main trick is to
heat up the area where the solder should go and touch a bit of solder
there. Don’t melt it onto the soldering iron’s tip and then try to drip it
from there. Figure 1-1 shows the wiring of a Raspberry Pi Pico 2
connected to a Raspberry Pi Debug Probe. The two USB cables then
connect to the Raspberry Pi 5 host computer.
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Figure 1-1 A Raspberry Pi Pico 2 installed in a breadboard and connected to a Raspberry Pi
Debug Probe. The USB cables connect to the Raspberry Pi 5 host computer

Note Ifusing an RP2040/RP2350 board from another vendor, then
it is likely that the pins are in different locations, and the wiring
needs to be adapted for the location of the pins.




How to Install Software

If using a Raspberry Pi with the Raspberry Pi OS as the host computer,
then this is straightforward. This simplifies installation, since it runs
32-bit ARM code and shares development tools with the Raspberry Pi
Pico-series and other RP2040/RP2350-based boards.

The Getting started guide includes instructions for working with
Visual Studio Code. The easiest way to get up and running is to install
Visual Studio Code and to add the Raspberry Pi Pico-series extension,
which installs everything needed. This book also covers installing the
Pico-series SDK separately and then working with text files that can be
edited in any editor, using cmake and make for building, gdb (GNU
debugger) and openocd for debugging, and minicom for
communications.

Using Visual Studio Code

To install Visual Studio Code and a few other required dependencies,
use the following commands:

sudo apt update
sudo apt install code

Now run Visual Studio Code; find the extensions marketplace, as
shown in Figure 1-2; and install the Raspberry Pi Pico code extension.
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Figure 1-2 The Raspberry Pi Pico extension in the Visual Studio Code marketplace

Installing the Full SDK

The Visual Studio Code extension places a minimal copy of the Pico-
series SDK under each project. This is required since any parts of the
SDK used in the project need to be compiled into the final executable.
However, the full SDK can be installed into a central location and then
shared by various separate projects. If the host computer is a Raspberry
Pi, this is simple to set up as there is a shell script that can be run to do
the whole job. “Appendix C: Manual toolchain setup” in the Getting
started with Raspberry Pi Pico-series guide explains this process and
provides the necessary steps.

A Simple Program to Ensure Things Are
Working



The easiest way to ensure everything is working is to compile and play
with a couple of the SDK examples. The Getting started with Raspberry
Pi Pico-series book has a walk-through on how to do this. Here, rather
than duplicate, a list of the key things needed throughout this book is
provided. Using either Visual Studio Code or the standalone SDK is fine,
though Visual Studio Code automates some of these processes. Here’s a
list of the prerequisite sKkills:

e How to load and run a program. Visual Studio Code will either do this
automatically or give an error that the Pico needs to be powered on
and off holding down the bootsel button. Using the standalone SDK
the Pico needs to be powered off and on while holding down the
bootsel button, and then the program must be manually copied to
the shared drive.

 How to compile a program to either send its output to the USB or
serial port. Visual Studio Code has a dialog to specify this; for the
standalone SDK, the CMakelLists.txt file needs to be edited.

e How to display output from the Pico either using Visual Studio Code’s
monitor pane or using minicom to display the output that the Pico is
sending.

e How to compile a program for debug.

* How to debug a program, either using Visual Studio Code or using
openocd and gdb.

Tip Building a program requires running both cmake and make. It
isn’t always clear which part does what command. If a configuration
change is made, it is best to delete and recreate the build folder
ensuring everything is built from scratch.

Create Some Helper Script Files

When following along with the Getting started with Raspberry Pi Pico-
series guide, there are many long command lines to type in (or to
copy/paste). It saves significant time to create a collection of small shell
scripts to automate the common tasks. These can be placed in

$HOME /bin. Then add



export PATH=SPATH:SHOME/bin

to the end of the SHOME/.bashrc file. These all need to be made
executable with

chmod +x filename

First, a script for minicom—one to listen on either the USB or UART
for text messages:
File m-usb:

minicom -b 115200 -o -D /dev/ttyACMO

File m-uart:

minicom -b 115200 -o -D /dev/seriall

Note If using the Raspberry Pi Debug Probe, then m-usb will
always be used as the Debug Probe’s job is to turn UART traffic into
USB traffic.

To build debug, a helpful script is cmaked containing

cmake -DCMAKE BUILD TYPE=Debug

To ensure openocd is fully installed, run

sudo apt install openocd

To run openocd, ready to accept connections from gdb, the script
ocdg containing

sudo openocd -f interface/cmsis-dap.cfg -f

is helpful. This version is for using the Raspberry Pi Debug Probe
and a Raspberry Pi Pico 2. If debugging via a different method or using
a different board, then different cfg files are required. Note that all the
cfg files to choose from are found in the two folders:



SHOME/ .pico-sdk/openocd/0.12.0+dev/scripts/target
SHOME/ .pico-
sdk/openocd/0.12.0+dev/scripts/interface

When gdb starts, it needs to connect to openocd. This can be
automated by creating a .gdbinit file in the $HOME folder. This file then
contains

target remote localhost:3333

Note This.gdbinit will be used anytime gdb is started, so if
debugging a local file without using openocd is needed, then this file
needs to be renamed while this is done.

Summary

This chapter is the starting point for programming the Raspberry Pico-
series board. No Assembly Language programming has been done yet,
but now the development environment is set up to write, debug, test,
and deploy programs written in either C or Assembly Language. The
host computer, say a Raspberry Pi 5, is connected to the Raspberry Pi
Pico-series board through a USB cable and to the Raspberry Pi Debug
Probe through a second USB cable. The Raspberry Pi Pico-series board
is connected to the Raspberry Pi Debug Probe through its serial port
pins and the debugging port pins. The Pico-series board is installed in
an electronics breadboard ready to have other components connected
to it. In Chapter 2, all these tools will be used to start the journey to
writing a program with RP2040/RP2350 Assembly Language.
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Most of the functionality of a Raspberry Pi Pico-series is contained in the Raspberry-
designed custom RPxxxx chip such as the RP2040 or RP2350. These contain dual-
core ARM Cortex-M-series CPUs such as the Cortex-MO0+ or Cortex-M33. The ARM
processor was originally developed by a group in Great Britain who wanted to build a
successor to the BBC Microcomputer used for educational purposes.

The BBC Microcomputer used the 6502 processor, which was a simple processor
with a simple instruction set. The problem was there was no successor to the 6502.
Unhappy with the microprocessors that were around at the time, since they were
much more complicated than the 6502, and not wanting to make another IBM PC
clone, they took the bold move to design their own. They developed the Acorn
computer that used it and tried to position it as the successor to the BBC
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Microcomputer. The idea was to use Reduced Instruction Set Computer (RISC)
technology as opposed to Complex Instruction Set Computer (CISC) as championed
by Intel and Motorola.

Developing silicon chips is an expensive proposition, and unless it’s at a good
volume, manufacturing is costly. The ARM processor probably wouldn’t have gone
anywhere except that Apple came calling looking for a processor for a new device
they had under development—the iPod. The key selling point for Apple was that as
the ARM processor was RISC, therefore, it used less silicon than CISC processors and
as a result used far less power. This meant it was possible to build devices that ran for
a long time on a single battery charge.

Unlike Intel, ARM doesn’t manufacture chips; it licenses the designs for others to
optimize and manufacture chips. With Apple onboard, suddenly there was a lot of
interest in ARM, and several big manufacturers started producing chips. With the
advent of smartphones, the ARM chip really took off and now is used in pretty much
every phone and tablet and even powers some Chromebooks making it the number
one processor in the computer market.

The designers at ARM are ambitious and architect their processors ranging from
low-cost microcontrollers all the way up to the most powerful CPUs used in
supercomputers. ARM’s line of microcontroller CPUs are the Cortex-M-series. This
book concentrates on the ARM Cortex M0+ used in Raspberry Pi’'s RP2040 SoC and
the ARM Cortex-M33 used in the RP2350 SoC.

To make these chips inexpensive, the transistor count is reduced as much as
possible. The M-series CPUs are all 32-bit and have fewer registers and a smaller
instruction set than the full A-series ARM CPUs like those used in the full Raspberry
Pi. The M-series CPUs are optimized to use as little memory as possible as memory
tends to be limited in microcontrollers, again to keep costs down.

This book examines how the Cortex-M-series works at the lowest level and will
often have to deal with the trade-offs made by the chip designers keeping transistor
counts down. There are several optional components available from ARM for these
chips. The ones included in the RP2040 and RP2350, such as the fast integer
multiplier and divider (multiplication and division are an extra), are considered. The
RP2350 even includes a floating-point unit.

Ten Reasons to Use Assembly Language

A Raspberry Pi Pico-series chip can be programmed with MicroPython or C/C++.
These are productive languages that hide the details of all the bits and bytes, keeping
the focus on the application. When programming in Assembly Language, the program
is tightly coupled to the current CPU, and moving the program to another CPU
requires a complete rewrite. Each Assembly Language instruction does only a
fraction of the amount of work, so to do anything takes a lot of Assembly Language
statements. Therefore, to do the same work as, say, a Python program takes an order
of magnitude larger amount of source code written by the programmer.



Writing in Assembly Language is harder, as problems with memory addressing
and CPU registers must be solved, which are all handled transparently by high-level
languages. So why would a programmer ever want to learn Assembly Language
programming? Here are ten reasons people learn and use Assembly Language:

1.
To write more efficient code: Knowing how the computer works internally

leads to writing more streamlined code, even if never writing Assembly
Language code. For example, make data structures easier to access and write
code in a style that allows the compiler to generate more effective code. Also,
make better use of computer resources, like coprocessors, and use the given
computer to its fullest potential.

To utilize specialty coprocessors: The PIO coprocessors on the
RP2040/P2350 are only programmable in Assembly Language. There is a
library of common applications in the Software Developer’s Kit (SDK), but if
something beyond these is needed, Assembly Language is the only option.

To more effectively debug programs: When debugging any program on the
Pico-series using gdb, a lot of the views are at the Assembly Language level. The
Assembly Language code generated by the compiler can be seen, along with the
CPU registers and raw memory. Understanding this extra level of detail can help
solve more difficult program bugs. Further, much of the SDK is written in
Assembly Language, and understanding it helps when stepping through the
code.

To make RP2040/RP2350 programs faster: If the C compiler or MicroPython
runtime isn’t producing a program that is responsive enough, then add some
Assembly Language code to solve a bottleneck.

To improve hardware interfaces: When interfacing the Pico-series to a
hardware device through the GPIO ports, the speed of data transfer is extremely
sensitive as is how fast the program can process the data. Perhaps, there are a
lot of bit-level manipulations that are more efficient to program in Assembly
Language.

To improve Machine Learning: The Pico-series is fast enough to perform
Machine Learning. This relies on fast matrix mathematics. If this can be made
faster with Assembly Language and/or using the coprocessors, then an Al-
based robot or sensor network can be made that much better.

To optimize specific functions: Most large programs have components
written in different languages. If the program is 99% C++ and Python, the other
1% could be Assembly Language, perhaps giving the program a performance
boost or some other competitive advantage.

8. To add hardware support to the SDK: If working for a hardware company



that makes an RP2040/RPZ2350-based board competitor to the Raspberry Pi
Pico-series, these boards have some Assembly Language code in the SDK that
must be customized for their specialized functionality or configuration.

9.
To look for security vulnerabilities: When searching for security
vulnerabilities, the Assembly Language code needs to be examined; otherwise,
there isn’t a way to know what is really going on and hence where holes might
exist. This is especially important when connecting to IoT networks.

10.

To conserve precious resources: When programming microcontrollers, there
are limited memory and resources. Often every bit needs to be used efficiently
to get an application to do what is needed. Often Assembly Language is the only
option to cram in every bit of functionality possible.

Computers and Numbers

Numbers for humans are typically represented using base 10. The common theory is
that this is done because humans have ten fingers to count with. This means a
number like 387 is a representation for

387 = 3 * 102 + 8 * 10t + 7 » 100
=3 * 100 + 8 * 10 + 7
= 300 + 80 + 7

There is nothing special about using 10 as the base, and a fun exercise in math
class is to do arithmetic using other bases. In fact, the Mayan culture used base 20,
perhaps because humans have 20 digits—10 fingers and 10 toes.

Computers don’t have fingers or toes; rather, everything is a switch that is either
on or off. As a result, it is natural for computers to use base 2 arithmetic. Thus, to a
computer a number like 1011 is represented by

1 * 23 4+ 0 * 22 41 x 2L 41 % 20
=1*8+ 0 * 4+ 1 *2+1
=8+ 0+ 2 +1

= 11 (decimal)

1011

This is great for computers, but four digits are used for the decimal number 11
rather than two digits. The big disadvantage for humans is that writing out binary
numbers is tiring, because they take up so many digits.

Computers are incredibly structured, so all their numbers are the same size.
When designing computers, it doesn’t make sense to have all sorts of differently sized
numbers, so a few common sizes have taken hold and become standard.

First is the byte, that is, 8 binary bits or digits. In the example above with 4 bits,
there are 16 possible combinations of Os and 1s. This means 4 bits can represent the



numbers 0-15. This means each number can be represented by one base 16 digit.
Base 16 digits are represented by the numbers 0-9 and then the letters A-F for 10-
15. Base 16 numbers are referred to as hexadecimal (Figure 2-1).

Decimal 0-9 10 11 12 13 14 15
Hex Digit 0-9 A B C D E F

Figure 2-1 Representing hexadecimal digits

A byte (8 bits) can be represented as two base 16 digits. This makes writing out
numbers far more compact and easier to deal with.

Since a byte holds 8 bits, it can represent 28 (256) numbers. Thus, the byte e6
represents

e6 = e * 16 + 6 * 16Y
=14 * 16 + ©
= 230 (decimal)
= 1110 0110 (binary)

An ARM Cortex-M processor handles 32-bit numbers, a 32-bit quantity is called a
word, and it is represented by 4 bytes. So a string like B6 A4 44 04 is seen as a
representation of 32 bits of memory or one word of memory or perhaps the contents
of one register.

If this is confusing or scary, don’t worry. The tools will do all the conversions. It’s
just a matter of understanding what is presented on screen. Also, if an exact binary
number needs to be specified, usually that is done in hexadecimal, though all the
tools accept all the formats.

The calculator (galculator) that is bundled with the Raspberry Pi OS, in scientific
view, converts between decimal, hex, octal, and binary, as well as performs several
computer-related logical operations. Figure 2-2 is a screenshot of this calculator
displaying the hex number E6.
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Figure 2-2 The Raspberry Pi OS’s galculator

There is a bit more complexity in how signed integers are represented and how
arithmetic works. This is explained later when arithmetic is covered.

ARM Assembly Instructions

In this section, the basic architectural elements of the ARM Cortex-MO0+ processor are
introduced, and the form of its machine code instructions is looked at. The ARM
processor is a Reduced Instruction Set Computer (RISC), which theoretically will
make learning Assembly Language easier. There are fewer instructions, and each
instruction is simpler, so the processor can execute each instruction much quicker.
The challenge is that it can take quite a few instructions to accomplish easy tasks.
The goal is to develop design patterns to help building more sophisticated structured
programming elements.

When programming an ARM A-series CPU, in 32-bit mode, as with the Raspberry
Pi 5, then there is a subset of the instruction set called the “thumb” instructions.
Newer A-series CPUs typically have 32-bit instructions, but if memory needs to be
conserved, then there is a “thumb” mode. When switching to “thumb” mode, most of
the instructions are 16 bits in size, thus using half the memory:.

The M-series CPUs are designed for embedded processors running with minimal
memory. This led the designers of the M-series to make the full instruction set to be
most of the A-series thumb instructions. This book won’t continue to refer to them as
thumb instructions, since these are the full instruction set of the Cortex-M-series
CPUs used in the RP2040 and RP2350. Running a simpler instruction set is a key
design decision to keep the transistor count down; therefore, the cost and power
consumption of M-series processors are down.

In technical computer topics, there are often chicken-and-egg problems in
presenting the material. The purpose of this section is to introduce all the terms and



ideas used later. This introduces all the terms so they are familiar when we cover
them in full detail.

CPU Registers

In all computers, data is not manipulated in the computer’s memory; instead, it is
loaded into CPU registers, and then the data processing or arithmetic operation is
performed in these registers. The registers are part of the CPU circuitry allowing
instant access, whereas memory is a separate component and there is a transfer time
for the CPU to access it.

To add two numbers:

Load one into one register and the other into another register.
Perform the add operation putting the result into a third register.

Copy the answer from the results register back to memory.

This is typical of a RISC processor where it takes several instructions to perform
simple operations.

A program on the ARM M-series processor has access to 16 32-bit integer
registers and a status register:

¢ RO-R7: These eight are general-purpose that can be used for anything.

e R8-R11: These registers can be used to store values, but there are few instructions
that can access these directly.

e R12: The intra-procedure call scratch register (IP).

e R13: The stack pointer (SP).

e R14: The link register used in the context of calling functions, which will be
explained in more detail when subroutines are covered.

e R15: The program counter (PC). The memory address of the currently executing
instruction.

e Current Program Status Register (CPSR): This special register contains bits of
information on the last instruction executed. More on the CPSR when branch
instructions (if statements) are covered.

ARM Instruction Format

Most ARM Cortex-M-series binary instructions are 16 bits long. There are a small
number of 32-bit-long instructions that will be talked about when encountered.
Fitting all the information for an instruction into 16 bits is quite an accomplishment
requiring using every bit to tell the processor what to do. There are several
instruction formats, and these will be explained when they are encountered. To give
an idea for some data processing instructions, consider the format for an ADD
instruction. Figure 2-3 is the format of the instruction and what the bits specify.
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Figure 2-3 The binary format of the ADD instruction

Examining each of these fields:

e Opcode: Which instruction is being performed, like ADD or SUB
e Rm and Rn: The two registers to add
e Rd: The destination register—where to put the result of the addition

For example, consider the following Assembly Language instruction:

ADD R5, R3, R2

This is the human-readable form of the instruction to the computer: R5 = R3 +
R2. The Assembler tool converts this into a machine-readable form, namely, the 16
bits: 0x189d. In binary this is 0001 1000 1001 1101, so pulling apart the bits reveals
the following:

Opcode = 0001100, meaning ADD
Rm=010=2 (i.e, R2)
Rn=011=3 (i.e, R3)
Rd=101=5 (i.e, R5)

Note Each register is specified by 3 bits allowing the use of registers RO-R7. If it
makes sense to operate on one of the other registers like SP, then there will be a
specific opcode for that, and a register won’t be specified.

If familiar with A-series Assembly Language, this instruction is actually ADDS,
since it “sets” the CPSR when it executes. M-series Assembly Language doesn’t
have the option to control whether the CPSR is set, so it tends to be left off;
however, the Assembler will take either.

In A-series Assembly Language, this instruction can be seen as ADD.N,
meaning narrow, indicating the 16-bit encoding instead of ADD.W, which gives the
32-bit encoding. Again, the M-series only supports .N, so it isn’t necessary to
specify this.

When things are running well, each instruction executes in one clock cycle. An
instruction in isolation takes three clock cycles, namely, one to load the instruction
from memory, one to decode the instruction, and then one to execute the instruction.
The ARM CPU is smart and works on three instructions at a time, each at a different
step in the process, called the instruction pipeline. If there is a linear block of
instructions, they all execute on average taking one clock cycle.



RP2040/RP2350 Memory

The RP2040 has 264 kilobytes (kb) of memory, and the RP2350 has 520kb of
memory. Programs are loaded from the Pico-series’ flash storage into memory and
executed. The memory holds the program, along with any data or variables
associated with it.

e The CPU registers are 32 bits in size. These are used both to address memory and
to perform integer arithmetic. This means that memory addresses are 32-bit
quantities. This is why we call an ARM M-series CPU a 32-bit processor.

¢ Instructions are mostly 16 bits in size. This doesn’t affect the bitness of the
processor; it is simply a technique to minimize memory usage and keep CPU
processing simple.

To load a register from a known 32-bit memory address, for example, a variable
to perform arithmetic on, is a common operation. How is this done? The instruction
is only 16 bits in size, and nearly all the bits are already used to specify the opcode
and register to use.

This is a problem that will be returned to several times, since there are multiple
ways to address it. In a CISC computer, this isn’t a problem since instructions are
typically quite large and variable in length.

Memory can be loaded by using a register to specify the address to load. This is
called indirect memory access. But all this does is move the problem, since there still
isn’t a way to put the value into that register (in a single instruction).

The quick way to load memory that isn’t too far away from the program counter
(PC) register is to use the load instruction via the PC, since it allows an 8-bit offset
from the register. This allows efficient access memory within 256 words of the PC.
Yuck, how would a programmer write such code? This is where the GNU Assembler
comes in. It allows the location to be specified symbolically and will figure out the
offset automatically.

In Chapter 6, the details of accessing memory will be studied in detail. In all RISC
processors this is a challenge since the size of memory addresses is typically larger
than the size of the Assembly Language instructions.

About the GCC Assembler

Writing Assembly Language code in binary as 16-bit instructions would be painfully
tedious. Enter GNU’s Assembler, which provides the power to specify everything that
the ARM can do but takes care of getting all the bits in the right place. The general
way to specify assembly instructions is

label: opcode operands

The label: is optional and only required if the instruction is the target of a branch
instruction.



There are quite a few opcodes; each one is a short mnemonic that is human
readable and easy for the Assembler to process. They include

e ADD for addition
e LDR for load a register
¢ B for branch

There are quite a few different formats for the operands, and these will be
covered as the instructions that use them are encountered.

Hello World

In almost every programming book, the first program is a simple program to output
the string “Hello World”. This will now be done with Assembly Language to
demonstrate some of the concepts discussed. This sample will be built both with
Visual Studio Code and the raw Pico-series C/C++ SDK framework, to demonstrate
the two common ways of building projects. Up first is Visual Studio Code.

With Visual Studio Code

Start up Visual Studio Code and, from the Raspberry Pi Pico extension, choose to
create a new C/C++ project. Figure 2-4 shows the New Pico Project screen with the
necessary fields filled in when using the Raspberry Pi Debug Probe:
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Figure 2-4 The Visual Studio Code Raspberry Pi Pico extension New Pico Project dialog

e Name: HelloWorld
e Stdio support: Console over UART
e Debugger: DebugProbe (CMSIS-DAP)

Now take the code from Listing 2-1 and copy it to a file called HelloWorld.S
placed in the folder specified for the HelloWorld project.

Note Itisimportantto use.S and not .s in the filename, because .S will support
some C-type include files, whereas .s is for pure Assembly Language only. As more
of the SDK is used, more C-type files will need to be included.

@

@ Assembler program print out "Hello World"
@ using the Pico SDK.

@



@ RO - first parameter to printf

@ R1 - second parameter to printer

@ R7 - index counter

@

.thumb func @ Necessary because sdk uses
BLX

.global main @ Provide program starting

address to linker

main:

MOV R7, #0 @ initialize counter to O

BL stdio init all @ initialize uart or usb
loop:

LDR RO, =helloworld @ load address of string

ADD R7, #1 @ Increment counter

MOV R1, R7 @ Move the counter to second
parameter

BL printf @ Call pico printf

B loop @ loop forever
.data

.align 4 @ necessary alignment

helloworld: .asciz "Hello World %d\n"

Listing 2-1 The Hello World program

Now delete the HelloWorld.c file that was created in that same folder. This work
will automatically be represented in the file list for the project. However, the
CMakelLists.txt file needs to be edited to change

add executable (HelloWorld HelloWorld.c )
to
add_executable (HelloWorld HelloWorld.S )
The complete CMakeLists.txt file is shown in Listing 2-2.
cmake minimum required (VERSION 3.13)

set (CMAKE C_STANDARD 11)
set (CMAKE CXX_ STANDARD 17)
set (CMAKE EXPORT COMPILE COMMANDS ON)

# Initialise pico_sdk from installed location



# (note this can come from environment, CMake cache etc)

# == DO NOT EDIT THE FOLLOWING LINES for the Raspberry Pi
Pico VS Code Extension to work ==
if (WIN32)
set (USERHOME SENV{USERPROFILE})
else ()
set (USERHOME SENV{HOME})
endif ()
set (sdkVersion 2.2.0)
set (toolchainVersion 14 2 Rell)
set (picotoolVersion 2.2.0)
set (picoVscode ${USERHOME}/.pico-sdk/cmake/pico-vscode.cmake)
if (EXISTS ${picoVscode})
include (${picoVscode})
endif ()

set (PICO BOARD pico2 CACHE STRING "Board type")

# Pull in Raspberry Pi Pico SDK (must be before project)
include (pico sdk import.cmake)

project (HelloWorld C CXX ASM)

# Initialise the Raspberry Pi Pico SDK
pico sdk init ()

# Add executable. Default name is the project name, version
0.1

add executable (HelloWorld HelloWorld.S )

pico set program name (HelloWorld "HelloWorld")
pico set program version (HelloWorld "O0.1")

# Modify the below lines to enable/disable output over
UART/USB

pico enable stdio uart (HelloWorld 1)

pico enable stdio usb (HelloWorld O0)

# Add the standard library to the build
target link libraries (HelloWorld
pico stdlib)



# Add the standard include files to the build
target include directories (HelloWorld PRIVATE
${CMAKE CURRENT LIST DIR}

)

pico add extra outputs(HelloWorld)

Listing 2-2 CMakeLists project definition file

With this work done, click the Compile button on the bottom status bar to
compile the project. For best results disconnect the USB cable from the Pico-series
and reconnect it while pressing the BootSel button. Then start the Serial Monitor in
VS Code. Now click Run and the Hello World strings should be seen in the monitor
pane as shown in Figure 2-5.

Figure 2-5 VS Code running the HelloWorld program showing the results in the Serial Monitor pane

With the Pico-series C/C++ SDK

First, create a “pico” folder in $HOME and then create a “HelloWorld” folder in the
$HOME /pico folder. Now copy the Assembly Language source file HelloWorld.S from
Listing 2-1 to this folder. Next, copy CMakeLists.txt from Listing 2-2. All the files
mentioned here will be placed in this folder.

The CMakelLists.txt file lists the source files, the libraries needed, and some
configuration details for the SDK. This file will compile the HelloWorld.S, link it to
the pico_stdlib library, and configure the SDK whether to direct the output to either
the UART or USB port. There is information on the compiler versions to use, which



mostly match the SDK requirements since the included parts of the SDK need to be
built to be included in the program.

Set one of pico_enable_stdio_uart and pico_enable_stdio_usb to 1 and the other
to 0 to control where the output of the “Hello World” text will go.

Copy pico_sdk_import.cmake from the SDK folder pico-sdk/external into the
project folder. Finally, create a build folder using “mkdir build” or using the file
explorer. The project folder should now look like the following:

drwxr-xr-x 5 smist08 smist08 4096 Aug 12 15:25 build
-rw-r--r—-- 1 smist08 smist08 1564 Aug 12 13:49
CMakeLists.txt

-rw-r--r-—- 1 smist08 smist08 664 Nov 5 2021 HelloWorld.S
-rw-r--r—-- 1 smist08 smist08 6022 Aug 5 11:36

pico_sdk import.cmake

The project is now ready to build. Open a terminal window and cd into the project
folder’s build folder. Type

cmake

Note It might be necessary to install cmake with “sudo apt install cmake.”

This command will add the SDK files that are needed for this project and create a
makefile. Now type

make

This command compiles the project. If all goes well, the build folder should now
contain the following:

-rw-r—--r—-- 1 smist08 smist08 28562 Aug 12 15:24
CMakeCache.txt

drwxr-xr-x 6 smist08 smist08 4096 Aug 12 15:25 CMakeFiles
-rw-r—--r—-—- 1 smist08 smist08 1837 Aug 12 15:24

cmake install.cmake

-rw-r--r-—- 1 smist08 smist08 362565 Aug 12 15:24

compile commands.json

drwxr-xr-x 3 smist08 smist08 4096 Aug 12 15:24 generated
—rwxr-xr-x 1 smist08 smist08 15292 Aug 12 15:25
HelloWorld.bin

-rw-r--r-—- 1 smist08 smist08 237755 Aug 12 15:25
HelloWorld.dis

-rwxr-xr-x 1 smist08 smist08 393212 Aug 12 15:25
HelloWorld.elf



-rw-r—--r—-- 1 smistO08
HelloWorld.elf.map

-rw-r—--r-— 1 smist08
HelloWorld.hex
-rw-r—--r-— 1 smist08
HelloWorld.uf?2
-rw—-r—--r-- 1 smistO08
-rw-r—--r-— 1 smist08

pico flash region.ld
drwxr-xr-x 6 smist08

smist08

smistO08

smistO08

smist08
smist08

smistO08

385508
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Aug
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Aug
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12

12

12
12

12

15:

15:

15:

15

15:

25

25

25

:24 Makefile
15:

24

24 pico-sdk

HelloWorld.uf2 is the compiled program. It can be run by powering off the Pico-
series and then powering it on while holding down the BootSel button. In this mode
it will present its flash storage as a shared drive, and HelloWorld.uf2 can be copied
onto that drive. As soon as this is done, the Pico will reboot and run the program.

The output can be viewed using minicom, if the batch files recommended in
Chapter 1 were created. Then run m-usb assuming that the Debug Probe is being
used. When this is done, something like the screenshot in Figure 2-6 should be

observed.
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Figure 2-6 The output from the minicom program for Hello World

Now that the program is running, the contents of HelloWorld.S are examined.



Our First Assembly Language File

This file is organized into four sections: the header comments, the function
definition, the Assembly Language code, and the program data. Each of these sections
will be examined in detail.

About the Starting Comment

The program starts with a comment that states what it does. It documents the
registers used since keeping track of which registers are doing what becomes
important as our programs get bigger.

e An “@” character is the comment character, and everything after the “@” is a
comment. That means it is there for documentation and is discarded by the GNU
Assembler when it processes the file.

e Assembly Language is cryptic, so it's important to document what is going on.
Otherwise, returning to the program after a couple of weeks will result in having
no idea what the program does.

e Each section of the program has a comment stating what it does, and then each line
of the program has a comment at the end stating what it does. Everything between
a /*and */ is also a comment and will be ignored.

Where to Start
Next, the starting point of the program is specified.

e This is defined as a global symbol called main that the Pico-series runtime will call
to execute the program. All programs will contain this somewhere.

e This must be defined as a thumb_func, due to the way the SDK calls the function.
What this means is explained in Chapter 7. Cortex M-series CPUs don’t support any
other type of function, but this is still required. If omitted, a hardware fault will
result when the program is run.

e The program can consist of multiple .S files, but only one can contain main.

Assembly Instructions
Five different Assembly Language instructions are used in this example:

1.
MOV, which moves data into a register. First, an immediate operand is used,

which starts with the “#” sign. So “MOV R7, #0” means move the number 0 into
R7. In this case the 0 is part of the instruction and not stored elsewhere in
memory. Secondly, “MOV R1, R7” moves the contents of register R7 into R1. In
the source file, the operands can be upper- or lowercase.

BL, which calls a function. Two functions are called: stdio_init_all to initialize
communications back to the Raspberry Pi 5 and printf that sends the text. printf
has two parameters in this case: the first is placed in R0, which is the address of
the string to print, and the second in R1, which is the integer counter.

LDR. which is used to both load memorv addresses and load the contents for



3. merr;ory. In this case “LDR RO, =hellowoJrld" loads register RO with the address of

the string to print.

4.
ADD, which adds two 32-bit integers. “ADD R7, #1” adds the immediate operand

#1 (the number 1) to register R7 incrementing it.

B, which branches to the label loop. Labels are symbolic indicators of positions in
the code or data.

Next up is the last section, the data section.

Data

Next is the .data statement, which indicates the following instructions are located in
the data section of the program.

e First, there is an “align 4” statement. This ensures the memory address is divisible
by four. Some instructions require the data to be aligned, and even if the
instruction doesn’t require data alignment, data loads faster when it is aligned (the
memory circuitry usually will require two reads for a non-aligned 32-bit quantity).

e Nextis the label “helloworld” followed by an .asciz statement and then the string
to print.

e The .asciz statement tells the Assembler to put the string in the data section, and
then it can be accessed via the label as done in the LDR statement. The z in asciz
asks the Assembler to place a 0 byte after the last character, which is required by
the printf function. How text is represented as numbers will be discussed later; the
encoding scheme here is called ASCII.

e The last “\n” character is how a new line character is represented.

These are the individual instructions. Now how they work together is discussed.

Program Logic

On full computers running operating systems like Linux, Windows, or MacOS,
programs usually run, do their job, and then terminate returning control to the
operating system. In this way, many programs are run all under the control of the
operating system, and the operating system is the only program that runs from
power-on to power-off. On microcontrollers, typically, there is no operating system.
The only thing that runs is the application program. The expectation is that the
program will be run shortly after the Pico-series powers on and then terminated
when it is powered off. This is why an infinite loop was created that runs forever,
which is typical of most microcontroller programs.

If the program terminated after printing “Hello World”, the CPU would halt until
the microcontroller is powered off and on again. Chances are the printing of “Hello
World” would be missed because it would happen before minicom is started. A
counter was added as a simple example and so that when minicom is run it is clear



that something is actually happening, namely, the count forever increasing till it
wraps around and starts over.

The call stdio_init_all at the beginning initializes either the UART or USB channel
depending on what was configured in the CMakeLists.txt file. For the Raspberry Pi
Debug Probe, this should be UART.

The call to printf is an alias to pico_printf, which is an implementation of the C
runtime’s printf but contained in the Pico-series SDK for anyone to use. Assembly
Language programmers can call anything there as long as they know the protocol to
do so.

Why keep the count in register R7 rather than using R1 and saving having to
move R7 into R1 before each call to printf? The reason is that there is a register
usage protocol when calling functions and R1 is allowed to be used by printf,
without printf saving whatever is put there. If printf uses R7, then it must save the
value and restore it before returning. The register usage protocol will be studied in
Chapter 7.

The printf function takes a variable number of arguments; the first argument is
always a string. If the string contains certain characters like %d, this means print a
number, which then causes printf to look for a second parameter containing a 32-bit
integer. This is handy, since it converts the binary 32-bit quantity into a human-
readable number. Hopefully, if familiar with C programming, then this is all basic and
familiar.

Reverse Engineering the Program

How each Assembly Language instruction is compiled into a 16-bit number was
touched on quickly. The Assembler created the binary version of HelloWorld, and it
provides a file to show what it did. Specifically, look at the HelloWorld.dis file that
was generated in the build folder. This file contains everything that is combined to
create the program. This includes the code to initialize the RP2040 or RP2350 from
the SDK, the code for the printf function, as well as the code to communicate with
either the UART or USB ports. Listing 2-3 contains only the code and data sections
from Listing 2-1.

10000234 <main>:

10000234: 2700 movs r7, #0
10000236: f002 fe8d bl 10002£54
<stdio init all>

1000023a <loop>:

1000023a: 4803 ldr r0, [pc, #12] @
(10000248 <loop+0xe>)
1000023c: 3701 adds r7, #1

1000023e: 1c39 adds rl, r7, #0



10000240: f002 f££50 bl 100030e4

< __wrap printf>

10000244 e7f9 b.n 1000023a <loop>
10000246: 0000 .short 0x0000
10000248: 200005b0 .word 0x200005b0
200005b0 <helloworld>:

200005b0: bcoc6548 .word 0x6c6c6548
200005b4: 6£57206f .word Ox6f57206f
200005b8: 20646c72 .word O0x20646c72
200005bc: 000a6425 .word 0x000a6425

Listing 2-3 Disassembly of Hello World

In Listing 2-3, the first column is the memory address where the item will be
located. The second column is the binary form of the instruction created by the
Assembler from the human-readable forms of the instruction and its operands that
are in the next two columns. The disassembler sometimes adds helpful comments in
angle brackets <> or after an “@” comment character.

Some points to notice from this listing:

e Most of the instructions compile to 16-bit quantities except for the BL statements,
which are 32 bits. Practically speaking if the M-series CPU insisted on making BL
statements 16 bits, then the jumps would be too small to be useful, and the only
alternative would be to build the address in a register and then jump to it
indirectly, which would take several statements. This way functions can be called
efficiently with only one Assembly Language statement.

e MOV and ADD have been changed to MOVS and ADDS; this is to indicate that these
set the CPSR. The GNU toolchain is used for both ARM M-series and A-series
processors, and features from the A-series processor are present, even though
these can’t be changed on the M-series CPUs.

e The branch statement B has been changed to B.N. This is to indicate this is the 16-
bit version of this instruction. There is a 32-bit version of this instruction B.W, and
the Assembler will use B.W if the target of the branch is too far away to fit in 16
bits. The Assembler will use the most efficient version possible.

e Notice the second MOV statement was changed to “adds r1, r7, #0”. This adds R7
to 0 and puts the result in R1, which is what is wanted. With only 16 bits, bits can’t
be wasted with duplicate functions, so if there are ever two ways to do something,
one is aliased to the other. Again, the Assembler does these substitutions, so the
programmer doesn’t need to remember all these tricks that go on under the hood.

Look at the LDR instruction. It changed from

1dr RO, =helloworld

to



ldr r0, [pc, #12] ; (10000370 <loop+0xe>)

This is the Assembler helping with the ARM processor’s mechanism of addressing
memory with one instruction. It allows a symbolic address to be specified, namely,
“helloworld,” and translate that into an offset from the program counter.

Note [pc, #12] points to a bit of memory that holds 20000180, which is the
actual address of the “Hello World” string. The Assembler inserted this, and it will
be covered in detail in Chapter 6.

The Assembly Language program has 18 bytes of code and 22 bytes of data, which is
pretty small. This is the power of the small 16-bit assembly instructions used in the
ARM Cortex M-series processors. Notice that the uf2 file is 45k long, and the size of
the code it contains is about 22k. This is because in addition to this code, it contains
the SDK runtime code to initialize the RP2040/RP2350, set up the environment, and
then run the program. It also contains the SDK code for printf and any other SDK
routines that are used. This is the total code running in the 264kb/520kb of memory
available to the RP2040/RP2350. There is nothing else—no operating system.
Everything running is compiled from source code into the UF2 file, and that is all that
is running on the Pico-series after it powers up. A bit of code in the Pico-series
firmware loads the code into memory and then passes execution to it, and away it
goes.

Summary

This chapter introduced the ARM Cortex M-series processor and Assembly Language
programming along with why to use Assembly Language. Some of the tools that will
be used throughout the book were covered. How computers represent positive
integers was explained. How the ARM CPU represents Assembly Language
instructions was studied along with the registers it contains for processing data. The
RP2040/RP2350’s memory was introduced. The GNU Assembler was introduced,
which will assist in writing Assembly Language programs. A simple complete
program to print “Hello World” was written, and its output was viewed in VS Code or
minicom on the Raspberry Pi. In Chapter 3, more details on the tools used to build
and debug programs will be studied.

Exercises

1.
Convert the decimal number 1234 to both binary and hexadecimal.

Download the source code for this book from GitHub and compile the HelloWorld
program on a Raspberry Pi. Next, run it on a Pico-series board and observe the
output in minicom or VS Code.



Compare the size of the uf2 file when setting the various output options between
none, UART, and USB. Remember to delete the build folder whenever changing
the CMakeLists.txt file. Which one is the better option as the program size
approaches 264kb?

Decode a couple of the binary format of the instructions in Listing 2-3 to figure
out the operand and where the registers are specified.

Change the string that is printed. Try printing the number in hexadecimal.

" Rather than count up, change the program to count down subtracting 1 rather
than adding 1 in the loop.
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In this chapter, the build tools employed for program development are
explored in greater detail. The Pico-series C/C++ SDK and the Visual
Studio Code extension streamline much of the process of building
programs, yet gaining insight into the operations beneath these high-
level tools can be highly beneficial. Following this, attention turns to the
GNU debugger (gdb), which enables single stepping through programs
and examining registers and memory during execution.

CMake

CMake is an open source, build automation tool that is cross-platform
and compiler independent. The goal of using CMake in the Pico-series
SDK is to hide the messy details of using the various compiler
toolchains on the host computer, whether it's a Raspberry Pi, Windows,
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or MacOS. Clicking the Compile button in VS Code results in CMake
being run. With CMake the project is built from the CMakeLists.txt file,
and the details of how to run the GNU Assembler are automated. To
fully cover CMake requires a full book in itself, so only what is needed
for Assembly Language programming is covered.

CMake knows about the main C compilers and Assemblers,
including building C and Assembly Language files using the GNU
toolchain. The SDK adds CMake files to give specific options, like
compiling for the correct ARM Cortex M-series processor, and lets
CMake know where all the SDK files are located. The goal is to specify
the target executable name and list the files that need to be built; then
CMake, with the help of some definition files in the SDK, does all the
work. CMake doesn’t actually build the project; instead, it creates a
makefile for the GNU Make tool, which is covered in the next section.
GNU Make is then run to do the compiling.

Make doesn’t know anything about compiler tools; instead, it has a
list of rules that specify commands to run that CMake created. Now a
selection of the contents from the CMakeLists.txt file from Listing 2-2
is examined.

cmake minimum required (VERSION 3.13)

The above line specifies the minimum version of CMake required to
build the project. This is the recommended value from the SDK and
indicates the minimum version to build the SDK files.

set (CMAKE C STANDARD 11)
set (CMAKE CXX STANDARD 17)

set (sdkVersion 2.2.0)

set (toolchainVersion 14 2 Rell)
(

set (picotoolVersion 2.2.0)

These above statements define the version of the language used
(not the version of the compiler). For instance, we are using C11 (or
more formally ISO/IEC 9899:2011). These are the minimum versions of
the languages required for the SDK to work. Then the version of the
Pico-series SDK, the version of the GNU toolchain, and the version of
the picotool are specified; the picotool is responsible with interacting



with the Pico-series board after bootsel is pressed to perform tasks
like downloading new programs to the board.

set (PICO_BOARD picoZ CACHE STRING "Board type")

Setting the PICO_BOARD variable is crucial. This value ends up in
the resulting executable, and it won’t run unless this value matches the
value expected by the board. The default is the Pico 1 with the RP2040
chip, so this is crucial for any Pico 2 RP2350-type board.

include (pico sdk import.cmake)

The include statement includes the code from the specified file into
the file and executes it. This file was copied into the same place as the
CMakelLists.txt file. pico_sdk_import.cmake checks that the
environment variable PICO_SDK_PATH is set and then includes
${PICO_SDK_PATH}/pico_sdk_init.cmake. This file then includes several
further files that set up all the rules for building the SDK files and
applies all the configurable options documented in the SDK’s reference
manual.

project (HelloWorld C CXX ASM)

The above line defines the project name as HelloWorld and that C,
C++, and Assembly Language will be used. Even though the project
didn’t include any C or C++ files, many such files were included from
the SDK.

pico sdk init ()
The above call executes a macro to set up the SDK.

add executable (HelloWorld
HelloWorld.S
cfile.c
cplusplusfile.cpp

)



The above statement is where to add source files. A couple of extra
files were added for demonstration purposes.

Note They can be of different types, for example, a C and a C++ file.
Based on the file extension, CMake creates the correct build rules
into the generated makefile. Usually, as the project grows, all that is
needed is to add files here and CMake will take care of the rest.

pico set program name (HelloWorld "HelloWorld")
pico set program version (HelloWorld "0.1")

These two lines set the program name and version, which are
embedded in the resulting executable file.

pico enable stdio uart (HelloWorld 1)
pico enable stdio usb (HelloWorld O0)

The above macros are defined in the Pico’s SDK. We set them to
control where the output from printf statements go. Set the second
parameter to 1 to enable the device and 0 to disable it.

Note Change the options here and rebuild, rather than modifying
the source code. The correct code to support either the UART or USB
port is included when our project is built.

target link libraries (HelloWorld pico stdlib)

The above statement specifies the libraries to use. The library
needed so far is pico_stdlib, but other libraries can be added as needed.

target include directories (HelloWorld PRIVATE
${CMAKE_CURRENT_LIST_DIR}

)

The above call sets up where to look for include directories. If
unchanged this call includes all the various source files in the SDK. If



the project has the source code spread over multiple folders, then these
can be added separating them by spaces.

pico add extra outputs (HelloWorld)

If the above line is left out, the build works and an .elf file is
produced, which is an executable file for Linux; however, this isn't
always what is wanted. The pico_add_extra_outputs statement causes
CMake to generate build rules to create a .uf2 file from the .elf file,
which is the correct file to copy to the Pico-series’ flash storage. It also
generates useful files like the .dis file (disassembly file).

GNU Make

GNU Make is a tool used to build programs, by taking a number of rules
for how to compile programs and executing them. The rules are in the
form of dependencies, and Make compares the dates of the files, so if
the dependent file is newer than what it depends upon, then it knows to
not do that step. Working with Make is more efficient than working
with shell scripts, since it only builds what changed, therefore building
programs more quickly. CMake writes all the dependency scripts, so
the details of makefiles won’t be covered here. However, Make needs to
be run when using the Pico-series SDK after CMake is finished.

To build everything, ignoring the file data/times, use

make -B

Print Statements

Many debugging-type functions can be performed by peppering the
source code with calls to the SDK’s printf function. The SDK’s printf is
quite lightweight compared with the full C runtime printf function,
because it doesn’t use memory allocation and is re-entrant; even so, it
contains most of the functionality that C programmers typically use. In
the “Hello World” program, adding printf was easy and non-disruptive
since only one register was used. However, there are a few complexities
to be aware of:



e Functions are allowed to use registers R0-R3 without saving them. If
any of these four registers were used, then save them before calling
printf and restore them afterward. Furthermore, printf disrupts the
CPSR, meaning it can’t be inserted in the middle of code relying on
the CPSR.

e Each time seeing something new is required, adding a printf call is
needed, adding code to set registers and call the function. Then
everything needs to be recompiled, the .uf2 file copied to the Pico-
series board, and the output observed.

e There is only 264kb/520kb of memory on the RP2040/RP2350, and
creating a lot of strings to print things can use a substantial amount
of this precious resource.

* Even though the SDK is lightweight, it still takes memory and adds
processing time to the program, perhaps disrupting time-sensitive
tasks.

e Adding and removing source code for the printf statements could
result in bugs, for example, if a mistake is made and one extra
instruction is deleted.

e There may be surprising side effects from executing printf that
disrupt the program.

Some of these problems can be alleviated by using the GNU
Assembler’s macro feature. How to do this will be looked at in Chapter
7. In addition, printf is a useful function, but to address these
limitations, what is really needed is a full debugger and this is the GNU
debugger (gdb).

GDB

When programming with Assembly Language, being proficient with the
debugger is critical to success. Not only will this help with the Assembly
Language programming, but also it is a great tool to use with high-level
language programming. gdb addresses many of the concerns with
printf mentioned above; however, it introduces a few of its own and is a
technical tool that requires a learning curve to become proficient with
it.

gdb was installed either by the VS Code extension or the
pico_setup.sh script. This section assumes using the Raspberry Pi



Debug Probe.

Using the VS Code Extension

All debugging can be done inside Visual Studio Code. This provides a
nice visual environment for debugging.

Note Make sure to rename the .gdbinit file given in Chapter 1; this
is for debugging outside of VS Code, and its presence will cause gdb
to not start inside VS Code.

To start the debugging from VS Code, simply select “Start Debugging ...”
from the Run menu. This launches gdb and creates a breakpoint at main
as a starting point. This view provides a number of useful panes such as
a view of the current values of the registers. Figure 3-1 shows a
common gdb session for the HelloWorld program.

Figure 3-1 Running GDB inside Visual Studio Code

gdb commands are entered at the bottom of the Debug Console
pane. Take care that after each command focus is set to the code



window rather than staying in the debug console.

Next, how to get started without using VS Code will be looked at.
Then a selection of gdb commands will be looked at, which will apply to
both environments.

Preparing to Debug

VS Code handles setting up to debug behind the scenes, but when using
the raw Pico-series SDK, there is a bit of preparation required. The GNU
debugger (GDB) can debug programs as it is, but this isn’t the most
convenient way to go. In the HelloWorld program there is the label
helloworld. If the program is debugged as is, the debugger won’t know
anything about this label, since the Assembler changed it into an
address in a .data section. There is a command-line option for the
Assembler that includes a table of all our source code labels and
symbols, so they can be used in the debugger. This makes the program
executable a bit larger. The Assembler command-line arguments don’t
need to be known; instead, CMake is provided with a command-line
argument to specify a debug build.

Often, debug mode is set while developing the program and then
turned off before releasing the program. Unlike some high-level
programming languages, debug mode doesn’t affect the machine code
that is generated, so the program behaves exactly the same in both
debug and non-debug modes.

Generally it isn’t a good idea to leave debug information in
programs for release, because besides making the program executable
larger, it is a wealth of information for hackers to help them reverse
engineer the program. If the program is open source, then this isn’t
important as anyone can look at the source code and build the program
with any options desired. There are several cases where hackers caused
mischief because the program still had debug information present.

Note Make sure the CMakeLists.txt is configured to output to the
UART and not the USB port. When gdb halts the CPU, the USB
connection is broken.

To add debug information to the program, invoke CMake setting the
CMAKE_BUILD_TYPE to Debug. To ensure everything is generated



properly, delete and recreate the build folder first:

rm —-rf build
mkdir build

cd build
cmake -DCMAKE BUILD TYPE=Debug
make

Note The cmaked script from Chapter 1 could have been used to
save some typing.

Now everything is set up for debugging.

Beginning GDB
Before starting the debugger, the openocd server needs to run:

sudo openocd -f interface/cmsis-dap.cfg -f
target/rp2350.cfg -c "adapter speed 5000"

Or use the ocdg script created in Chapter 1.
To start debugging the “Hello World” program, enter the command

gdb HelloWorld.elf

This yields the abbreviated output:

$ gdb HelloWorld.elf

GNU gdb (Debian 13.1-3) 13.1

Copyright (C) 2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later

warning: No executable has been specified and
target does not support

determining executable automatically. Try using
the "file" command.



warning: multi-threaded target stopped without
sending a thread-id, using first non-exited thread
0x1000023e in 27?2 ()

Reading symbols from HelloWorld.elf...

(gdb)

The warning is a side effect of programming a microcontroller and
there is no operating system. It means the program isn’t ready to run
et; one more command needs to be entered to load it first.

Note Ifa.gdbinit file as indicated in Chapter 1 isn’t present,
then enter the command “target remote localhost:3333” at this point
to connect to the Pico-series board.

e gdb is a command-line program.

e (gdb) is the command prompt where commands are typed.

e Hit Tab for command completion. Enter the first letter or two of a
command as a shortcut.

First, the program needs to be loaded; type

load

(or lo for short). This can be done repeatedly, so in another window,
changes to the program can be made and recompiled, and then load it
again. This way the gdb environment doesn’t need to be restarted for
each program change, and any commands entered like setting
breakpoints are still in effect. Raspberry recommends issuing a
“monitor reset init” command after load, which is a good idea, even if it
isn’t always necessary.

To make the program run, type

continue

(or c for short).

If minicom is run to configure to read the Debug Probe, the “Hello
World” strings will be seen going by. The program will run forever, but
can be stopped by typing control-c.



After terminating the program, it will either be inside HelloWorld.S
code or inside one of the Pico-series SDK’s routines.

To stop at the start of HelloWorld, set a breakpoint to stop in the
main routine. Do this by using the breakpoint command (or b):

b main

Now reset and rerun with

monitor reset 1init
continue

The result is
Continuing.

Thread 1 "rp2350.cm0" hit Breakpoint 1, main ()
at /home/smist08/RP2040/Chapter

2/HelloWorld.S:14

14 MOV R7, #0 @ initialize counter to O

As far as gdb is concerned, the whole .elf file is the program,
including the SDK code to initialize the Pico-series. Since the entire SDK
is provided as source code, anything that is described here for
debugging code works equally well for the SDK code. The provision is
that the SDK code needs to do initial setup on the RP2040/RP2350
before a breakpoint can stop the CPU.

To list the program, type

list

(orl).
This lists ten lines. Type

for the next ten lines. Type

list 1,1000



to list the entire program.

The list gives the source code for the program, including comments.
This is a handy way to find line numbers for other commands. If the
raw machine code needs to be examined, then gdb can disassemble the
program with

disassemble main

This shows the actual code produced by the Assembler with no
comments.

The program can be executed one instruction at a time with the step
command (or s). To see the values of the registers, use the info registers
(orir) command:

Thread 1 "rp2350.cmO0" hit Breakpoint 1, main ()
at /home/smist08/RP2040/Chapter

2/HelloWorld.S:14

14 MOV R7, #0 @ initialize counter to O

(gdb) s

15 BL stdio _init all @ initialize uart or usb
(gdb) i r

r0 O0xe000e434 -536812492
rl 0x10000235 268436021
r2 0x80808080 -2139062144
r3 0x1000318c 268448140
r4 0x100001d0 268435920
r5 0x88526891 —-2007865199
ro 0x4£54710 83183376

r7 0x0 0

r8 0x43280035 1126694965
r9 0x0 0

rl0 0x10000000 268435456
rll 0x62707361 1651536737
rl2 Ox4a6dc800 1248708608
sp 0x20082000 0x20082000
lr 0x1000018¢f 268435855



o] 0x10000236 0x10000236
<main+2>

XpPSr 0x69000000 1761607680
fpscr 0x0 0

msp 0x20082000 0x20082000
psp 0x0 0x0

msp ns 0x0 0x0

psp_ns Oxfffffffc Oxfffffffc
msp s 0x20082000 0x20082000
psp_ s 0x0 0x0
primask 0x0 0

basepri 0x0 0
faultmask 0x0 0

control 0x0 0

msplim s 0x0 0x0

psplim s 0x0 0x0

msplim ns 0x0 0x0

psplim ns 0x0 0x0
primask s 0x0 0

basepri s 0x0 0
faultmask s 0x0 0

control s 0x0 0

primask ns 0x0 0

basepri ns 0x0 0
faultmask ns 0x0 0

control ns 0x0 0

R7 was set to 0 as expected. Continue single stepping or enter
continue (or c) to continue to the next breakpoint if there is one. As
many breakpoints as required can be set. These can be seen with the
info breakpoints (or i b) command. Delete a breakpoint with the delete
command, specifying the breakpoint number to delete.

(gdb) i b
Num Type Disp Enb Address What
4 breakpoint keep vy 0x10000234

/home/smist08/RP2040/Chapter 2/HelloWorld.S:14



(gdb) delete 4

(gdb) 1 b
No breakpoints or watchpoints.
(gdb)

Memory hasn’t been studied yet, but gdb has good mechanisms to
display memory in different formats. The main command is x with the
format

x /Nfu addr

where

e N is the number of objects to display.
e fisthe display format where some common ones are

e tfor binary

e x for hexadecimal
e d for decimal

e jforinstruction

e s for string

e uis unitsize and is any of

b for bytes

h for halfwords (16 bits)
w for words (32 bits)

e g for giant words (64 bits)

The main routine is stored at memory location 0x10000234:

(gdb) x /4ubft main
0x10000234 <main>: 00000000 00100111 0OOOOOO1O0
11110000
(gdb) x /4ubfi main
=> 0x10000234 <main>: movs r7, #0
0x10000236 <main+2>: bl 0x10002d10
<stdio init all>
0x1000023a <loop>: 1ldr r0, [pc, #12] @
(0x10000248 <loop+l4d>)



0x1000023¢c <loop+2>: adds r7, #1
(gdb) x /4ubfx main
0x10000234 <main>: 0x00 0x27 0x02 0xfO
(gdb) x /4ubfd main
0x10000234 <main>: 0 39 2 -16

To exit gdb, type q (for quit, or type control-d).

Table 3-1 provides a quick reference to the gdb commands
introduced in this chapter. As new things are learned, the knowledge of
gdb will be enhanced. It is a powerful tool to help develop programs.
Assembly Language programs are complex and subtle, and gdb is great
at showing what is going on with all the bits and bytes.

Table 3-1 Summary of useful GDB commands

Command (Short Form) Description

break (b) line Set breakpoint at line.
continue (c) Continue running the program.
step (s) Single step program.

quit (q or control-d) Exit gdb.

info registers (ir) Print out the registers.
control-c Interrupt the running program.
info break (i b) Print out the breakpoints.
delete n Delete breakpoint n.

x /Nuf expression Show contents of memory.
load (lo) Load the program.

monitor resetinit (mon resetinit) | Reset GDB.

It’s worthwhile to single step through the “Hello World” sample
program and examine the registers at each step to ensure what each
instruction is doing is understood.

Even if there isn't a known bug, many programmers like to single
step through the code to look for problems and to convince themselves
that the code is correct. Often two programmers do this together as
part of the pair programming agile methodology.



Summary

In this chapter, the CMake program was introduced that will be used to
build programs. This is a powerful tool used to generate all the rules for
the various compilers and linkers needed. Then the GNU debugger was
introduced that will allow the troubleshooting of programs.
Unfortunately, programs have bugs, and a way is needed to single step
through them and examine all the registers and memory as through this
process. GDB is a technical tool, but it’s indispensable in figuring out
what programs are doing.

In Chapter 4, how to load data into the CPU registers and
performing basic arithmetic will be studied. How negative numbers are
represented is covered along with learning new techniques for
manipulating binary bits.

Exercises

1.
Step through the “Hello World” program from Chapter 2, to ensure
complete understanding of the changes each instruction makes to
the registers. Ensure the output of the print statements can be
seen.

Experiment with the various gdb commands to ensure familiarity
with their various options.

Why does CMake generate a makefile that is used to build a
program rather than building it itself?
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This chapter introduces the MOV, ADD, and SUB instructions, first by
gradually providing a foundation for understanding the functionality of
the commands, particularly in how parameters (operands) are handled.
In subsequent chapters, the rest of the ARM instruction set is covered
at a faster pace. Before delving into the specifics of MOV, ADD, and SUB
instructions, topics such as the representation of negative numbers, as
well as the concepts of shifting and rotating bits, will be addressed.

About Negative Numbers

In the previous chapter, the representation of positive integers as
binary numbers, known as unsigned integers, was discussed. However,
a question arises: how are negative numbers represented? One intuitive
approach might suggest designating a single bit to indicate whether a
number is positive or negative. While straightforward, this method
introduces additional complexity for the CPU, as processing would
require checking the sign bit and then determining the appropriate
arithmetic operation and ordering.

About Two’s Complement

The great mathematician John von Neumann, of the infamous
Manhattan Project, came up with the idea of the two’s complement
representation for negative numbers, in 1945, when working on the
Electronic Discrete Variable Automatic Computer (EDVAC)—one of the
earliest electronic computers.

Consider a 1-byte hexadecimal number like 01. If OxFF is added

O0x01 + OxFF = 0x100

(all binary ones) the result is 0x100. However, since these are 1-byte
numbers, then the 1 is overflow and the result is zero:

0x01 + OxFF = 0x00

The mathematical definition of a number’s negative is a number
that when added to it makes zero; therefore, mathematically, FF is -1 in



the realm of 1-byte integers. The two’s complement form for any
number can be obtained by taking

2N — number

In the example, the two’s complement of 1 is
28 - 1 = 256 - 1 = 255 = OxFF

This is why it’s called two’s complement. An easier way to calculate
two’s complement is to change all the 1s to Os and all the Os to 1s and
then add 1. Doing this to 1 results in

OxFE + 1 = OxFF

Two’s complement is an interesting mathematical oddity for
integers that are limited to having a maximum value of one less than a
power of two, which is all computer representations of integers.

Why would computers represent negative integers this way? As it
turns out, addition is simple for the computer to execute. There are no
special cases; if the overflow is discarded, everything works out. This
means less circuitry is required to perform the addition, and as a result
it can perform faster. Besides handling the signs correctly, this also
results in the CPU using the same addition logic for signed and
unsigned arithmetic—another circuitry-saving measure. Consider

5+ -3

3 in 1-byte is 0x03 or 0000 0011 binary.
Inverting the bits is

1111 1100

Add 1 to get

1111 1101 = OxFD

Now add



5 + 0xFD = 0x102 = 2

Since the size is limited to 1 byte or 8 bits, the leading 1 overflows,
and the result is 2.

About the Raspberry Pi OS Calculator

Fortunately, computers provide good tools to do the conversions and
arithmetic for us, but when signed numbers are seen in memory, these
need to be recognized for what they are. The Raspberry Pi OS calculator
calculates two’s complement; type the negative number in decimal and
then press the HEX button. Figure 4-1 shows the Raspberry Pi OS
calculator representing -3 as a 32-bit hexadecimal number.

galculator v A X
File Edit View Calculator Help

FFFFFFFD -

DEC HEX OCT BIN DEG RAD GRAD ALG RPN FORM C AC
conv  funwv EE A B ( ) MS v R v M+ W
% X'y n! AND c T 8 9 / MOD
inv XA2 sqrt OR D 4 5 6 & LSH

hyp log In XOR E 1 2 3
CMP F 0 +/- - i

Figure 4-1 The Raspberry Pi OS calculator shows the two's complement of 3

About One’s Complement

Change all the 1s to Os and vice versa; then this is called one’s
complement, like two’s complement but without adding 1. There are
uses for the one’s complement form, and these will be encountered in
later chapters.

Big- versus Little-Endian
When examining a 32-bit representation of 1 stored in memory, it is



01 00 00 0O

rather than

00 00 00 O1

Most processors pick one format or the other to store numbers.
Motorola and IBM mainframes use what is called Big-Endian, where
numbers are stored in the order of most significant digit to least
significant digit, in this case:

00 00 00 O1

Intel processors use the Little-Endian format and store the numbers
in reverse order with the least significant digit first, namely:

01 00 00 00

Figure 4-2 shows how the bytes in integers are copied into memory
in both Little- and Big-Endian formats. Notice how the bytes end up in
the reverse order to each other.



Little-Endian Big-Endian
32-bit integer 32-bit integer

01020304 Memory 01020304

—» 04 01

—»{ 03 02

_ 02| 03

— » 01 04

N

Figure 4-2 How integers are stored in memory in Little- versus Big-Endian formats

About Bi-Endian

The ARM CPU is called Bi-Endian because it can do either. There is a
program status flag that says which endianness to use. By default, the
Pico-series SDK uses Little-Endian like Intel processors.

Pros of Little-Endian

The advantage of the Little-Endian format is that it makes it easy to
change the size of integers, without requiring any address arithmetic.
To convert a 4-byte integer to a 1-byte integer, load the first byte,
assuming the integer is in the range of 0-255 and the other 3 bytes are
zero. For example, if memory contains the 4 bytes or word for 1, in
Little-Endian, the memory contains

01 00 00 00

If a 1-byte representation of this number is needed, take the first
byte; for the 16-bit representation, take the first 2 bytes. The key point



is that the memory address used is the same in all cases, saving an
instruction cycle to adjust it.

Cons of Little-Endian

Even though the Pico-series SDK uses Little-Endian, many protocols
like TCP/IP used on the Internet use Big-Endian and so require a
transformation when moving data from the RP2040/RP2350 to the
outside world. The other con is that the bytes are reversed to what a
human is expecting, and this can lead to confusion when debugging.

How to Shift and Rotate Registers

There are sixteen 32-bit registers, and much of programming consists
of manipulating the bits in these registers. Two extremely useful bit
manipulations are shifting and rotating. Mathematically shifting all the
bits left one spot is the same as multiplying by two, and generally
shifting n bits is equivalent to multiplying by 2™. Conversely, shifting
bits to the right by n bits is equivalent to dividing by 2. For example,
consider shifting the number 3 left by 4 bits:

0000 0011 (the binary representation of the
number 3)

Shift the bits left by 4 bits to get
0011 0000

which is
0x30 = 3 * 16 = 3 * 21

Shifting 0x30 right by 4 bits undoes this showing it is equivalent to
dividing by 2%

About the Carry Flag

In the CPSR, there is a bit for carry. This is normally used to perform
addition on larger numbers. When adding two 32-bit numbers and the



result is larger than 32 bits, the carry flag is set. How to use this in the
case of addition will be looked at in detail later in this chapter. When
shifting and rotating, it turns out to be useful to include the carry flag.
This allows doing conditional logic based on the last bit shifted out of
the register.

Basics of Shifting and Rotating
There are five cases to cover, as follows:

e Logical Shift Left
Logical Shift Right
Arithmetic Shift Right
Rotate Right

Rotate Right Extend

Logical Shift Left
This is quite straightforward, as the bits are shifted left by the indicated

number of places and zeros come in from the right. The last bit shifted
out ends up in the carry flag.

Logical Shift Right
As the bits are shifted right, zeros come in from the left, and the last bit
shifted out on the left ends up in the carry flag.

Arithmetic Shift Right

The problem with Logical Shift Right is if it is a negative number with a
zero coming in from the left, suddenly the number turns positive. If the
sign bit needs to be preserved, instead use Arithmetic Shift Right. This

makes a 1 come in from the left if the number is negative and a 0 if it is
positive. This is the correct form when shifting signed integers.

Rotate Right

Rotating is like shifting, except the bits don’t go off the end—instead,
they wrap around and reappear from the other side. In this instance
Rotate Right shifts right, but the bits that leave on the right will
reappear on the left.



Rotate Right Extend

Rotate Right Extend behaves like Rotate Right, except that it treats the
register as a 33-bit register, where the carry flag is the 33rd bit and is to
the right of bit 0. This type of rotation is limited to moving 1 bit ata
time; therefore, the number of bits is not specified in the instruction.

How to Use MOV

This section covers the two forms of the MOV instruction:

1.
MOV RD, #imm38

2.
MOV RD, RS

Move Immediate

The first case is move immediate, which puts a small number into a
register. Here the immediate value can be any 8-bit quantity, and it will
be placed in the lower 8 bits of the specified register. This form of the
MOV instruction is as simple as it gets and will be used frequently, for
example:

MOV R2, #3 @ Move 3 into register R2

Note Remember from Chapter 2 that most instructions encode
registers as only 3 bits. When an instruction does this, then only the
low registers RO-R7 are valid, and that is the case for using the
move immediate command.

Moving Data from One Register to Another

The second case is a version that moves one register into another. This
is actually two separate instructions, one that moves between two low
registers (RO-R7) while setting the CPSR and another that moves
between any registers but doesn’t set the CPSR. This is one of the few
instructions that allows access to the high registers R8-R15.



Note Remember that R12-R15 are special and changing these will
have side effects. R12 is the intra-procedure call scratch register
(IP), R13 is the stack pointer (SP), R14 is the link register (LR), and
R15 is the program counter (PC). Moving a value to R15 will cause
execution to jump to that location. How to properly use these
registers will be studied in later chapters, so avoid them for now.

Here are some examples:

MOV  R1, R2

MOVS R1, R2 @ the S explicitly states the
first version.

MOV R9, R3

MOV SP, R10 @ SP = R13

MOV PC, R11 @ PC = R15

Now that small 8-bit values can be placed in registers, it is time to
do some arithmetic.

ADD/ADC

Start with addition. The various forms of the addition instruction are

ADD Rd, Rn, #imm3
ADD Rd, Rd, #imm38
ADD Rd, Rm, Rn
ADD Rd, Rd, Rm
ADD SP, SP, #imm7
ADD Rd, SP, #imm38
ADC Rd, Rd, Rm

These instructions all add their second and third parameters and
put the result in their first parameter Register Destination (Rd). A few
notes on these instructions are as follows:

e Number 4, “ADD Rd, Rd, Rm,” is the only one that allows any register
(R0-R15) to be specified; since there are only two registers, a couple
of extra bits are available.



Except for number 4 and where SP is explicitly used, all the registers
are low registers (R0-R7).

All the immediate operands are positive integers.

Numbers 5 and 6 are special instructions for dealing with the stack
register. The function of these is covered in Chapter 7.

Only the instructions that deal with the low registers set the carry
flag in the CPSR.

The stack pointer must point to a word boundary, so any address in
SP must be divisible by 4. As a result, only multiples of 4 are allowed
in the immediate value allowing it to be four times larger than
expected.

Some examples are

ADD R4, R2, #7 @ this immediate allows 3
bits, so values 0-7

ADD R4, R4, #255 @ this one allows 8-bits,
so 0-255

ADD R4, #255 @ alternate for R4 = R4 +
255

ADD R10, R10, R13 @ The one instruction to
allow high registers

ADD R10, R13 @ 1f one source register
is the destination, it can be omitted

ADD SP, #508 @ shouldn’t do this
without matching subtraction

ADD R4, SP, #1020 @ 8-bit immediate so 0-

1020 valid in steps of 4

Add with Carry

The remaining instruction is Add with Carry (ADC). This uses the carry
flag from the CPSR.
Think back on how to add numbers:

17
+78
95



1. First,add 7 + 8 and get 15.

2.
We put 5 in the sum and carry the 1 to the tens column.

3.
Now add 1 + 7 + the carry from the ones column, so add 1+7+1 and
get 9 for the tens column.

This is the idea behind the carry flag. When an addition overflows, it
sets the carry flag, so it can be included in the sum of the next part.

Note A carry is always 0 or 1, so only a 1-bit flag is needed for this.

The ARM processor adds 32 bits at a time, so the carry flag is only
needed when dealing with numbers where the sum is larger than will
fit into 32 bits. A common application is to use the carry flag to easily
add 64-bit or larger numbers.

The carry flag is a bit in the CPSR; the CPSR will be looked at in
more detail in Chapter 5. If the result of an addition is too large, then
the carry flag is set to 1; otherwise, it is set to 0.

To add two 64-bit integers, use two 32-bit registers to hold each
number. This example uses registers R2 and R3 for the first number, R4
and RS5 for the second, and then RO and R1 for the result. The code is

ADD R1, R3, R5 @ Lower order word
ADC R2, R4 @ Higher order word
MOV RO, R2 @ Move the result to the

desired register

The first ADD adds the lower-order 32 bits and sets the carry flag, if
needed. It might set other flags in the CPSR, but those will be looked at
later. The second instruction, ADC, adds the higher-order words, plus
the carry flag.

Note ADC only takes two registers, so the sum overwrote the
original number in R2, which is moved into RO in the next




instruction. If the original value of R2 is still needed, it should be
saved to another register first.

The nice thing here is that although in 32-bit mode, 64-bit addition can
be performed in only two clock cycles (three if the MOV is counted).

SUB/SBC

Subtraction is the inverse of addition. There are a number of forms of
this:

SUB Rd, Rn, Rm
SUB Rd, Rn, #imm3
SUB Rd, Rd, #imm8
SBC Rd, Rd, Rn

SUB SP, SP, #imm7
NEG Rd, Rn

The operands are the same as those for addition, only now
calculating Rn - Rm. The carry flag is used to indicate when a borrow is
necessary. SUB will clear the carry flag if the result is negative and set it
if it’s positive. SBC then subtracts one if the carry flag is clear.

NEG will negate a number: Rd = -Rn.

Shifting and Rotating

Here are the instructions for shifting and rotating the bits in a register:

1.
LSL Rd, Rm, #shift5

LSL Rd, Rd, Rs
LSR Rd, Rm, #shift5
LSR Rd, Rd, Rs

ASR Rd, Rm, #shifth



6. ASRRd, Rd, Rs

7.
ROR Rd, Rd, Rs

These operations are Logical Shift Left (LSL), Logical Shift Right
(LSR), Arithmetic Shift Right (ASR), and Rotate Right (ROR). Here are a
few notes about these instructions:

e The immediate value 5 bits gives values 0-31, sufficient for a 32-bit
register.

» This set of instructions only operates on the low registers (R0O-R7).

e The instructions that have Rd as the second operand can only
operate in place (the first and second operands must be the same,
and thus one can be omitted).

Here are some examples:

LSL R1, R1, #2 @ Shift register R1 left 2
bits (multiply by 4)

LSL R1, #2 @ Shorter form if the
registers are the same

LSR R1, R2, #8 @ Shift R2 right by one bytes
and place the result in Rl

LSR R1, R3 @ Shift R1 right by the wvalue
in R3

ASR R1, #8 @ Arithmetic shift R1 right by
one byte

ROR R1, R3 @ Rotate R1 right by wvalue of
R3

Quite a few instructions have been introduced in this chapter. Now
on to combining a few of them to load a 32-bit register.

Loading All 32 Bits of a Register

So far, how to load 8 bits with an immediate operation has been seen;
but, with MOV combined with shifting and adding, all the bits can be
loaded, for example, to load RO with the value 0x12345678. The
approach will be to do it 8 bits at a time. 8 bits will be loaded, shifted



into position, and then added to the result. Listing 4-1 contains the code
for this.

@ Initialize RO with the leftmost byte

MOV RO, #0x12 @ load the first 8-
bits

LSL RO, #24 @ shift it left 24
bits into place
@ Load the next byte into R1

MOV R1, #0x34 @ load the second byte

LSL R1, #16 @ shift it into place
ADD RO, R2 @ add it into RI1
@ repeat for the third byte
MOV R1, #0x56 @ load the third byte
LSL R1, #8 @ shit it into place
ADD RO, R1 @ add it to the sum
@ for the last byte no shift required
MOV R1, #0x78 @ load the fourth
bytes
ADD RO, R1

Listing 4-1 Loading all 32 bits of a register

That was a bit of work and demonstrates that working with a small
set of instructions can create quite a few program statements, but
remember each instruction is only 16 bits in size. In Chapter 6, how to
load registers from memory will be studied, which is less code, but
there will be cases later where tricks like this result in quick ways to
load registers (especially if there are zeroes in the middle). Next is an
example containing all these instructions.

MOV /ADD/Shift Example

If the various code snippets in this chapter including the 32-bit register
loading and 64-bit addition are combined, Listing 4-2 results. This
program ensures the registers are initialized and provides comments of
what the results should be. There is a label “after” after the call to
stdio_init_all, which is a good place to set a breakpoint and then single



step through the code. Use gdb’s “i r” command frequently to check the
values of the registers. At the end the program prints out the 64-bit sum
from the addition. The instructions are for using the Pico-series SDK,
but the code could easily be put into a VS Code project.

1.
Create a new project folder.

2.
Create a file called “movaddsubshift.S” containing Listing 4-2 in
that folder.

@
@ Examples of the MOV/ADD/SUB/Shift instructions.
@

.thumb func @ Necessary
because sdk uses BLX
.global main @ Provide program

starting address to linker

main: BL stdio init all @ initialize uart
or usb
after: MOV R2, #3 @ Move 3 into
register R2

MOV R1, R2 @ R1 is now also
3

MOVS R1, R2 @ the S
explicitly states we want the first version.

MOV R9, R2 @ R9 now is 3

@ we shouldn't play with SP or PC until we know
what we're doing.

@ MOV SP, R10 @ SP = R13
@ MOV PC, R11 @ PC = R15
ADD R4, R2, #7 @ this immediate

allows 3 bits, so values 0-7
@ R4 1is now 10 (3 + 7)



ADD R4, R4, #255 @ this one allows
8-bits, so 0-255
@ R4 is now 265 (10 + 255)

ADD R4, #255 @ alternate for
R4 = R4 + 255
@ R4 is now 520 (265 + 255)

MOV R7, #23 @ Can't load high
registers with immediate

MOV R11, R7 @ So load R7 and
move it

MOV ~ R7, #54

MOV R10, R7 @ if one source
register is the destination, it can be omitted

ADD R10, R10, R11 @ The one

instruction to allow high registers
@ R10 is now 77 (23 + 54)

ADD SP, SP, #508 @ shouldn’t do
this without matching subtraction

SUB SP, SP, #508 @ Undo the
damage.

ADD R4, SP, #1020 @ 8-bit immediate

but multiples of 4 so 0-1020 wvalid

@ need to check R4 in the debugger since it
depends on the value of SP

@ when I ran I got 0x200423fc but if SDK changes
this could change.

@ Repeat the above shifts using the Assembler
mnemonics.

MOV R3, #8 @ will use this
to shift or rotate 1l-byte

MOV R2, #OxFF @ R2 = 255

MOV R1, #4 @Rl =4

LSL R1, R1, #2 @ Shift register
R1 left 2 bits (multiply by 4)

LSL R1, #2 @ Shorter form 1f

the registers are the same



LSR R1, R2, #8 @ Shift R2 right
by one bytes and place the result in Rl

LSR R1, R3 @ Shift R1 right
by the value in R3

ASR R1, #8 @ Arithmetic
shift R1 right by one byte

ROR R1, R3 @ Rotate R1 right

by value of R3

@ Load 0x12345678 into R3
@ Initialize R3 with the leftmost byte

MOV R3, #0x12 @ load the first
8-bits

LSL R3, #24 @ shift it left
24 bits into place
@ Load the next byte into R1

MOV R1, #0x34 @ load the second
byte

LSL R1, #16 @ shift it into
place

ADD R3, R1 @ add it into R1
@ repeat for the third byte

MOV R1, #0x56 @ load the third
byte

LSL R1, #8 @ shit it into
place

ADD R3, R1 @ add it to the
sum
@ for the last byte no shift required

MOV R1, #0x78 @ load the fourth
bytes

ADD R3, R1

@ Other registers for our upcoming 64-bit addition
MOV R2, #0x12
MOV R4, #0x54
MOV R5, #0xfO0



LSL R5, #24 @ shift f£0 over
to the high byte

@ 64-bit Addition (rigged to cause a carry)
@ Do sum:
@ R2 R3 0x12 0x12345678

@ R4 RS 0x54 0xF0000000
@ _______________________
@ RO R1 0x67 0x02345678

ADD R1, R3, R5 @ Lower order
word

ADC R2, R4 @ Higher order
word

MOV RO, R2 @ Move the

result to where we want it

@ Save RO, Rl since printf will overwrite them
MOV R6, RO @ R6 = RO
MOV R7, R1 @ R7 = R1

@ print out the sum
loop: MOV R1, R6 @ R1 is param?2

MOV R2, R7 @ R2 1is param3

LDR RO, =sumstr @ load address
of sumstr to paraml

BL printf @ call printf

B loop @ loop 1n case
uart monitoring not started
.data

.align 4 @ necessary

alignment
sumstr: .asciz "The sum is %x %$x\n"

Listing 4-2 Examples of the MOV, ADD, and shift instructions along with 64-bit addition

Listing 4-3 contains the CMakeLists.txt file needed to build this
sample. Be sure to change the PICO_BOARD value to the precise Pico-



series board being used. Remember to copy pico_sdKk_import.cmake
to the project folder.

cmake minimum required (VERSION 3.13)
set (PICO BOARD pico2 CACHE STRING "Board type")
include (pico sdk import.cmake)
project (MovAddSub C CXX ASM)
set (CMAKE C_STANDARD 11)
set (CMAKE CXX STANDARD 17)
pico _sdk init()
include directories (${CMAKE SOURCE DIR})
add executable (MovAddSub
movaddsubshift.S
)
pico enable stdio uart (MovAddSub 1)
pico enable stdio usb (MovAddSub O0)
pico add extra outputs (MovAddSub)
target link libraries (MovAddSub pico stdlib)

Listing 4-3 The CMakeLists.txt file for our sample

After building the program, have a look at MovAddSub.dis. The
program consists of forty-seven 16-bit instructions and two 32-bit
instructions (the two BL instructions). This means the program
contains 102 bytes of code. Even though it takes quite a few
instructions to get meaningful work done, the end program ends up
being extremely compact.

The program avoided making changes to registers R12-R15,
because if we change R15 (the program counter), the program will
jump to the value set, which in this case isn’t wanted. Registers R12-
R14 are used when functions are called, and if these are changed, the
call to printf won’t work. How to change R15 is covered in the next
chapter. How to use R12-R14 is covered in Chapter 7.

Summary

This chapter explored how negative integers are represented in
computers, followed by a discussion of Big- and Little-Endian byte



ordering. The concept of shifting and rotating bits within a register was
then introduced.

The next section provided a detailed examination of the MOV
instruction, which facilitates transferring data between CPU registers
or loading constants directly into a register.

Coverage included the ADD and ADC instructions, along with
methods for adding both 32- and 64-bit numbers. A brief introduction
to the SUB and SBC instructions was given. The discussion concluded
with an overview of various shift and rotation instructions.

The instructions were combined to load all 32 bits of a register and
then integrated into an example program to add two 64-bit integers.

In Chapter 5, conditionally executing code and branching and
looping are covered, which are the core building blocks of programming
logic.

Exercises

1.
Compute the 8-bit two’s complement for -79 and -23.

What are the negative decimal numbers represented by the bytes
0xF2 and 0x83?

Manually write out the bytes in the Little-Endian representation of
0x12345678.

Manually write out the bytes for 0x23 shifted left by 3 bits.
Manually write out the bytes for 0x4300 right shifted by 5 bits.

Code a program to add two 96-bit numbers. Managing the limited
number of registers will be a problem to be solved.

Code a program that performs 64-bit subtraction. Make sure that
the way it sets and interprets the carry flag is understood. Use it to
reverse the operations from the 64-bit addition in Listing 4-2.
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A handful of Assembly Language instructions are now familiar, allowing
for linear execution, one after another. Programs can be built and
debugged with these foundations. This chapter introduces more
engaging program flow through conditional logic—such as
if/then/else statements in high-level languages—and loops, including
for and while constructs. With these instructions, the basics of coding
logical program structures are established.

Unconditional Branch
The simplest branch instruction is

B label

which is an unconditional branch to a label. The label is interpreted
as an offset from the current PC register and has 11 bits in the
instruction allowing a range of -2,048 to 2,046. 211 is 2,048, but since
instructions must be on even addresses, this offset is multiplied by 2.
This instruction is like a goto statement in some high-level languages.

About the CPSR

The Current Program Status Register (CPSR) has been mentioned
several times without really looking at what it contains. The carry flag
was discussed when looking at the ADD/ADC instructions. In this
section, a few more of the flags in the CPSR will be looked at.

All the flags it contains are shown in Figure 5-1, though a couple of
them won'’t be discussed until later chapters. In this chapter, the group
of condition code bits commonly used for conditional logic are studied.

31| 30| 29| 28 | 27 26-0
N | Z|C |V | Q Reserved

Figure 5-1 The bits in the CPSR

The condition flags are



Negative: N is 1 if the signed value is negative and cleared if the result
is positive or 0.

Zero: Is set if the result is 0; this usually denotes an equal result from
a comparison. If the result is non-zero, this flag is cleared.

Carry: For addition-type operations, this flag is set if the result
produces an overflow. For subtraction-type operations, this flag is set
if the result requires a borrow. Also, it’s used in shifting to hold the
last bit that is shifted out.

OVerflow: For addition and subtraction, this flag is set if a signed
overflow occurred.

Note Some instructions may specifically set oVerflow to flag
an error condition.

Q: This flag is set to indicate underflow and/or saturation.

Branch on Condition

The branch instruction, at the beginning of this chapter, can take a
modifier that instructs it to only branch if a certain condition flag in the
CPSR is set or clear.

The general form of the branch instructions is

B{condition} label

where {condition} is taken from Table 5-1.

Table 5-1 Condition codes for the branch instruction

{condition} | Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CSor HS Cset Higher or same (unsigned >=)
CCorLO Cclear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow




{condition} | Flags Meaning

VC V clear No overflow

HI Csetand Z clear Higher (unsigned >)

LS Cclearand Z set Lower or same (unsigned <=)
GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same | Signed >

LE Z set, N and V differ Signed <=

AL Any Always (same as no suffix)

For example,
BEQ main

will branch to main if the Z flag is set. This seems a bit strange, why
isn’t the instruction BZ for branch on zero? What is equal here? To
answer these questions, the CMP instruction needs to be looked at.

About the CMP Instruction

There are two forms of the CMP instruction:

1.
CMP Rn, Rm

2.
CMP Rn, #imm38

This instruction compares the contents of register Rn with the
second operand, by subtracting the second operand from Rn and
updating the status flags accordingly. It behaves exactly like the SUB
instruction, except that it only updates the status flags and discards the
result. For example, to do a branch only if register R4 is 45, code the
following:

CMP R4, #45
BEQ main



In this context, the mnemonic BEQ makes sense; since CMP
subtracts 45 from R4, the result is zero if they are equal, and the Z flag
will be set. Studying Table 5-1 in this context should make the
mnemonics make more sense.

Note Rn mustbe alow register (RO-R7); Rm can be any register
(RO-R15). Both registers cannot be high registers.

Loops

With branch and comparison instructions in hand, constructing some
loops modeled on what is found in high-level programming languages is
looked at.

FOR Loops
Consider the For loop from the Basic programming language:

FOR I =1 to 10
some statements...
NEXT T

This can be implemented as shown in Listing 5-1.

MOV R2, #1 @ R2 holds I
loop: @ body of the loop goes here.

@ Most of the logic is at the end

ADD R2, #1 @I =1I+1
CMP R2, #10
BLE loop @ IF I <= 10 goto loop

Listing 5-1 Basic For loop
To do this by counting down,

FOR I = 10 TO 1 STEP -1
some statements...
NEXT I



can be implemented as shown in Listing 5-2.

MOV R2, #10 @R2 holds I
loop: @ body of the loop goes here.

@ The CMP is redundant since we
@ are doing SUB.

SUB R2, #1 @
BNE loop @

I =1 -1
branch until I = 0

Listing 5-2 Reverse For loop

Here an instruction is saved, since with the SUB instruction, the
CMP instruction isn’t needed.

WHILE Loops
To code a basic While loop:

WHILE X < 5
other statements
END WHILE

Initializing the variables and changing the variables aren’t part of
the While statement. These are separate statements that appear before
and in the body of the loop. In Assembly Language, one possible
implementation is shown in Listing 5-3.

@ R4 is X and has been initialized
loop: CMP R4, #5
BGE loopdone
other statements in the loop body

B loop
loopdone: @program continues

Listing 5-3 While loop

Note A while loop only executes if the statement is initially true, so
there is no guarantee that the loop body will ever be executed.




If/Then/Else

In this section, how to implement the following pseudo-code in
Assembly Language is considered:

IF <expression> THEN
Sstatements
ELSE
statements
END IF

In Assembly Language, the <expression> needs to be evaluated and
the result placed in a register that can be used for comparison. For now,
the following simple <expression> is considered:

register comparison immediate-constant

In this way, the expression can be evaluated with a single CMP
instruction, for example, to code the following pseudo-code:

IF R5 < 10 THEN
1if statements
ELSE
else statements
END IF

is implemented in Listing 5-4.

CMP R5, #10
BGE elseclause

if statements

B endif
elseclause:

else statements



endif: @ continue on after the /then/else

Listing 5-4 1f /then/else statement

This is simple, but it is still worth putting in comments to be clear
which statements are part of the if/then/else and which statements are
in the body of the if or else blocks.

Tip Adding a blank line can make the code much more readable.

Logical Operators

For the upcoming sample program, slightly more complexity is
required, and it will start manipulating the bits in the registers. The
ARM Cortex-M-series’ logical operators provide several tools to do this,
as follows:

AND Rd, Rd, Rm
EOR Rd, Rd, Rm
ORR Rd, Rd, Rm
BIC Rd, Rd, Rm
MVN Rd, Rm
TST Rn, Rm

These operate on each bit of the registers separately. Here are a
couple of notes:

o All of these instructions only operate on the low registers (R0-R7).
e For all the instructions where the first two operands are the same,
they can be shortened to specify two registers.

Figure 5-2 shows what each logical operation does to each
combination of input bits.

X Y XANDY | XEORY [ XORRY XBICY
0 0 0 0 0 0
0 1 0 1 1 0
1 0 0 1 1 1
1 1 1 0 1 0




Figure 5-2 What each logical operator does with each pair of bits

AND

AND performs a bitwise logical and operation between each bit in Rd
and Rm, putting the result in Rd. Remember that logical and is true (1)
if both arguments are true (1) and false (0) otherwise.

AND is often used to mask off a byte of information. Suppose only
the high-order byte of a register is wanted. Listing 5-5 shows how to
code this.

@ mask off the high-order byte
MOV R5, #O0xFF

LSL R5, #24 @ R5 = 0xFF000000
AND R6, RS

Listing 5-5 Using AND to mask a byte of information

This code will preserve the high-order byte while zeroing out the
other 3 bytes. It takes two instructions to load the mask, one to load
OxFF and then an LSL instruction to shift it into the correct position.

EOR

EOR performs a bitwise exclusive or operation between each bit in Rd
and Rm, putting the result in Rd. Remember that exclusive or is true (1)
if exactly one argument is true (1) and false (0) otherwise.

ORR

ORR performs a bitwise logical or operation between each bit in Rd
and Rm, putting the result in Rd. Remember that logical or is true (1) if
one or both arguments are true (1) and false (0) if both arguments are
false (0), for example:

MOV R5, #O0xFF @ Load he second argument
ORR R6, RD5 @ Perform R6 = R6 or Rb

This sets the low-order byte of R6 to all 1 bits (0xFF) while leaving
the 3 other bytes unaffected.



BIC

BIC (Bit Clear) performs Rd and not Rm. The reason is that if the bit in
Rm is 1, then the matching bit in Rd will be set to 0. If the bit in Rm is 0,
then the corresponding bit in Rd will be unaffected.

MVN

MVN (Move Not) performs a bitwise not operation on each bit or Rm
and places the result in Rd. This calculates the one’s complement of Rd.

TST

TST (And Test) performs an AND operation between Rn and Rm,
setting the condition flags and then discarding the result. This is like
the CMP instruction, but using AND instead of SUB, for example:

MOV R5, #O0xFF @ load R5 with OxFF
TST R6, RS @ compute R5 and R6
BNE lowbits @ if non-zero then there are

low order bits

Design Patterns

When writing Assembly Language code, there is a great temptation to
be creative. For instance, looping ten times could be done by setting the
tenth bit in a register and then shifting it right until the register is zero.
This works, but it makes reading the program difficult. If a program is
put aside and returned to at a later date, the programmer will be
scratching their head as to what the program does.

Design patterns are typical solutions to common programming
patterns. If a few standard design patterns are adopted on how to
perform loops and other programming constructs, it will make reading
programs much easier.

Design patterns make the programming more productive, since a
collection of tried-and-true patterns for most situations is available to
quickly utilize.

Tip In Assembly Language, make sure which design pattern being
used is documented, along with documenting the registers used.



Therefore, loops and if/then/else are implemented in the pattern of a
high-level language. If this is done, it makes the programs more reliable
and quicker to write. Later, the macro facility in the GNU Assembler will
be looked at to help with this.

Converting Integers to ASCII

The first example of a loop is to convert a 32-bit register to ASCII. In the
HelloWorld program in Chapter 2, the Pico-series SDK'’s printf function
was used to output the “Hello World” string. This program converts the
hex digits in the register to ASCII characters digit by digit. ASCII is one
way that computers represent all the letters, numbers, and symbols
that comprise the alphabet, as numbers that a computer can process,
for instance:

e Aisrepresented by 65.
e Bisrepresented by 66.
e (isrepresented by 48.
e 1isrepresented by 49.
e And so on.

The key point is that the letters A-Z are contiguous as are the
numbers 0-9. See Appendix A for all 255 characters.

Note For a single ASCII character that fits in 1 byte, enclose it in
single quotes, for example, ‘A. If the ASCII characters are going to
comprise a string, use double quotes, for example, “Hello World!”.

Here is some high-level language pseudo-code for what will be
implemented in Assembly Language (Listing 5-6).

outstr = memory where we want the string + 9
@ (string is form 0x12345678 and we want
@ the last character)
FOR RS = 8 TO 1 STEP -1
digit = R4 AND Oxf
IF digit < 10 THEN



asciichar = digit + '0'
ELSE
asciichar = digit + 'A' - 10
END IF
*outstr = asciichar
outstr = outstr - 1
NEXT RS

Listing 5-6 Pseudo-code to convert a register to ASCII

Listing 5-7 is the Assembly Language program to implement this. It
uses what was learned about loops, if/else, and logical statements.
Create a project folder for this along with a CMakeLists.txt as was done
in previous samples. This could also be done in VS Code.

@ Example to convert contents of register to ASCII
@

@ Rl - is also address of byte we are writing

@ R4 - register to print

@ R5 - loop index

@ R6 - current character

@ R7 - temp register

.thumb func @ Necessary
because sdk uses BLX

.global main @ Provide program

starting address to linker

main: BL stdio init all @ initialize uart
or usb
printexample:

@ Load R4 with 0x12AB

MOV R4, #0x12 @ number to print

LSL R4, #8

MOV  R7, #0xAB

ADD R4, R7

LDR R1, =hexstr @ start of string



ADD R1, #9 @ start at least

sig digit
@ The loop is FOR r5 = 8 TO 1 STEP -1

MOV R5, #8 @ 8 digits to
print
loop4d: MOV R6, R4

MOV R7, #0xf

AND R6, R7 @ mask of least
sig digit

@ If Ro >= 10 then goto letter

@ Else

letter:
cont:

digit

CMP R6, #10 @ is 0-9 or A-F

BGE letter

it's a number so convert to an ASCII digit

ADD R6, #'0"

B cont @ goto to end if
@ handle the digits A to F

ADD R6, #('A'-10)

@ end 1if
STRB R6, [R1] @ store ascii
SUB R1, #1 @ decrement

address for next digit

LSR R4, #4 @ shift off the

digit we Jjust processed

if not

repeat:

.align

@ next R5

SUB R5, #1 @ step R5 by -2
BNE loop4 @ another for loop
done

LDR RO, =printstr

LDR R1, =hexstr @ string to print
BL printf

B repeat

/



.data
hexstr: .asciz "0x12345678"
printstr: .asciz "Register = %$s\n"

Listing 5-7 Printing a register in ASCII

The best way to understand this program is to single step through it
in gdb and watch how it is using the registers and updating memory.
Remember from Chapter 1 that a debug build needs to be created with
the UART set for printing. Remember the Debug Probe will translate
this from UART to USB on the host computer. If not using VS code, then
have the updated .gdbinit in place, and run openocd via the ocdg
script.

Make sure the following code is understood and why

MOV R7, #0xf
AND R6, R7 @ mask of least sig digit

masks off the low-order digit; if not, review the “AND” section on
logical operators.

Since AND requires both operands to be 1 to resultin 1, and’ing
something with 1s (like 0xf) keeps the other operator as is, whereas
and’ing something with Os always makes the result 0.

In the loop, R4 is shifted 4 bits right with

LSR R4, #4

This shifts the next digit into position for processing in the next
iteration.

Note This is destructive to R4, and the original number is lost
during this algorithm.

Most of the elements present in this program have already been
discussed, but there are a couple of new elements; they are
demonstrated in the following.

Using Expressions in Immediate Constants



ADD R6, #('A'-10)

This demonstrates a couple of new tricks from the GNU Assembler:

Including ASCII characters in immediate operands by putting them
in single quotes.

Placing simple expressions in the immediate operands. The GNU
Assembler translates ‘A’ to 65, subtracts 10 to get 55, and uses that
as Operand?2.

This makes the program more readable, since the intent can be
seen, rather than just having coded 55. There is no penalty to the
program in doing this, since the work is done when the program is
assembled, not when it is run.

Storing a Register to Memory
STRB R6, [R1]

The Store Byte (STRB) instruction saves the low-order byte of the
first register into the memory location contained in R1. The syntax [R1]
is to make clear that memory indirection is being used and not just
putting the byte into register R1. This is to make the program more
readable, so this operation isn’t confused with a corresponding MOV
instruction.

Accessing data in memory is the topic of Chapter 6, where this is
covered in far greater detail. The way the byte is stored could be made
more efficient, and this will be looked at then.

Why Not Print in Decimal?

In this example program, the conversion to a hex string is simple
because using AND 0xf is equivalent to getting the remainder when
dividing by 16. Similarly shifting the register right 4 bits is equivalent to
dividing by 16. To convert to a decimal, base 10, string, then the
program needs to be able to get the remainder from dividing by 10 and
later divide by 10.



So far, division instructions haven’t been covered yet. This places
converting to decimal beyond the scope of this chapter. A loop could be
written to implement the long division algorithm learned in elementary
school, but instead division is deferred until Chapter 12.

Performance of Branch Instructions

In Chapter 2, the ARM Cortex-M series instruction pipeline was
discussed. Individually, an instruction requires three clock cycles to
execute, one for each of the following instructions:

1.
Load the instruction from memory to the CPU.

2.
Decode the instruction.

3.
Execute the instruction.

However, the CPU works on three instructions at once, each at a
different step, so on average execution time is one instruction every
clock cycle. But what happens when a branch occurs?

When the branch is executed, the next instruction is already
decoded, and the instruction two ahead is loaded. When the branch
happens, this work is thrown away, and the process starts over. This is
seen in the ARM documentation that most branch instructions take two
clock cycles to execute, whereas most other instructions only take one.
For a conditional branch, there is no penalty if the branch isn’t taken
and a BL instruction takes an extra cycle.

If a lot of branches are placed in the code, a performance penalty is
suffered. Another problem is that when programming with a lot of
branches, this leads to spaghetti code—meaning all the lines of code
are tangled together like a pot of spaghetti, which is understandably
quite hard to maintain.

Summary

In this chapter, the key instructions for performing program logic with
loops and if statements were studied. These included the instructions



for comparisons and conditional branching. Several design patterns
were discussed to code the common constructs from high-level
programming languages in Assembly Language. The instructions for
logically working with the bits in a register were looked at. How to
output the contents of a register in hexadecimal format was presented.

In Chapter 6, the details of how to load data to and from memory
are described.

Exercises

1.
Go through Table 5-1 of condition codes and ensure you
understand why each one is named the way it is.

Create an Assembly Language framework to implement a
SELECT/CASE construct. The format is

SELECT number
CASE 1:
<< statements if number is 1 >>
CASE 2:
<< statements if number is 2>>
CASE ELSE:
<< statements if not any other case
>>
END SELECT

Construct a DO/WHILE statement in Assembly Language. In this
case the loop always executes once before the condition is tested:

DO
<< statements in the loop >>
UNTIL condition

Modify the program in Listing 5-7 to print the hex representation of
two registers assuming that combined they hold a 64-bit integer.
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In this chapter, the memory of the Pico-series is explored in detail. Up to this
point, memory has primarily served as a location to store Assembly Language
instructions. The following sections provide an in-depth look at defining data
in memory, loading data into registers for processing, and writing results back
to memory.

The ARM Cortex-M series uses a load-store architecture. This means that
the instruction set is divided into two categories: one to load and store values
from and to memory and the other to perform arithmetic and logical
operations between the registers. The previous chapters mostly looked at the
arithmetic and logical operations. Now it is time to look at the other category
of load-store.

Memory addresses are 32 bits and instructions are 16 bits, presenting
similar challenges to those discussed in Chapter 4, where various techniques
were required to load 32 bits into a register.
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In this chapter, these same techniques are applied to loading addresses,
along with additional strategies. The objective is to load a 32-bit address in a
single instruction whenever possible. However, before loading and building
memory addresses, the contents of memory need to be defined with the GNU
Assembler.

How to Define Memory Contents

The GNU Assembler contains several directives to help define memory to use
in a program. These appear in a .data section of a program. First of all, some

examples are looked at and then summarized in Table 6-1. Listing 6-1 shows
how to define bytes, words, and ASCII strings.

label: .byte 74, 0112, 0b00101010, Ox4A, 0X4a, 'J', 'H'
+ 2

.word 0Ox1234ABCD, -1434

.asciz "Hello World\n"

Listing 6-1 Sample memory directives

The first line defines 7 bytes all with the same value. Numbers can be
defined bytes in decimal, octal (base 8), binary, hex, or ASCII. Anywhere
numbers are defined, expressions can be used that the Assembler will
evaluate when it compiles a program.

Most memory directives start with a label, so they can be accessed
symbolically from the code. The only exception is if defining a larger array of
numbers that extends over several lines.

The .byte statement defines 1 or more bytes of memory. Listing 6-1 shows
the various formats that can be used for the contents of each byte, as follows:

e A decimal integer starts with a non-zero digit and contains decimal digits 0-
0.

e An octal integer starts with zero and contains octal digits 0-7.

e Abinary integer starts with Ob or OB and contains binary digits 0-1.

e A hex integer starts with Ox or 0X and contains hex digits 0-F.

» A floating-point number starts with Of or Oe, followed by a floating-point
number.

Note Do not start decimal numbers with zero (0), since this indicates the
constant is an octal (base 8) number.




The example then shows how to define a word and a null-terminated ASCII
string, as seen in the HelloWorld program in Chapter 1. There are two prefix
operators that can be placed in front of an integer:

e Negative (-) will take the two’s complement of the integer.
e Complement (~) will take the one’s complement of the integer.

Here's an example:

.byte -0x45, -33, ~0b00111001

Table 6-1 lists the various data types that can be defined this way.

Table 6-1 The list of memory definition Assembler
directives

Directive | Description

.ascii A string contained in double quotes

.asciz A 0-byte-terminated ASCII string

.byte 1-byte integers

.double |Double-precision floating-point values
float Floating-point values

.octa 16-byte integers

.quad 8-byte integers

short 2-byte integers

.word 4-byte integers

To define a larger set of memory, there are a couple of mechanisms to use
without having to list and count them all, such as

.fill repeat, size, value

This repeats a value of a given size, repeat times, for example:

zeros: .fill 10, 4, O

creates a block of memory with ten 4-byte words all with a value of zero.
The following code

.rept count

.endr



repeats the statements between .rept and .endr, count times, for example:

.rept 3
.byte 0, 1, 2

.endr

is translated to

.byte 0,
.byte 0,
.byte 0,

1, 2
1, 2
1, 2

A rept/endr block can surround any Assembly Language code, for
instance, to make a loop by repeating the code count times.

The special character “\n” for a new line was used in the HelloWorld
string. There are a few more for common unprintable characters, as well as for
double quotes in strings. The “\” is called an escape character, which is a
metacharacter to define special cases. Table 6-2 lists the escape character
sequences supported by the GNU Assembler.

Table 6-2 ASCII escape character sequence codes

Escape Character Sequence | Description

\b Backspace (ASCII code 8)
\f Formfeed (ASCII code 12)
\n New line (ASCII code 10)

\r Return (ASCII code 13)

\t Tab (ASCII code 9)

\ddd An octal ASCII code (e.g,, \123)
\xdd Ahex ASCII code (e.g.,, \x4F)
\\ The "\" character

\” The double quote character
\anything-else anything-else

How to Align Data

These data directives put the data in memory contiguously byte by byte.
However, ARM processors often require data to be aligned on word
boundaries or by some other measure. The Assembler can be instructed to
align the next piece of data with an .align directive, for instance, consider



.data

.byte 0x3F
.align 4
.word 0x12345678

The first byte is word aligned, but because it is only 1 byte, the next word
of data will not be aligned. If data needs to be word aligned, then add the
“align 4” directive. This will result in 3 wasted bytes, but if this is a problem,
this may need to be rearranged in the memory in the .data section.

ARM Cortex-M-series Assembly Language instructions must be 16-bit
aligned, so if data is inserted in the middle of some instructions, then add an
.align directive before the instructions continue, or the program will crash
when it’s run.

In the next section, when data is loaded with PC-relative addressing, those
addresses must also be appropriately aligned. Usually, the Assembler gives an
error when alignment is required, and throwing in an “align 2” or “align 4”
directive is a quick fix.

How to Load a Register

In this section, the LDR instruction and its variations will be looked at. The
LDR instruction is used to both load an address into a register and to load the
data pointed to by that address. There are methods to index through memory,
as well as support for strategies to get as much as possible out of the 16-bit
instructions. The cases will be examined one by one, including

e Loading a memory address into a register
e Loading data from memory
e Indexing through memory

Note All the load and store instructions operate only on the low registers
(RO-R7); the only exceptions are PC- and SP-relative addressing that
explicitly use PC and SP.

First, how to load or create a memory address in a register is looked at.

How to Load a Register with an Address

To create a memory address in a register, it can either be created from scratch
or based on an address that is already in another register. First of all, the
address is built directly.



How to Build the Address Directly

When a program is written under a modern operating system, like Linux,
memory addresses can’t just be created, because they need to be provided by
the operating system to consider virtual memory and memory protection. On
a microcontroller, like the RP2040 or RP2350, there is no operating system,
virtual memory, memory management, or memory protection.

The memory map of the Pico-series is fixed and documented in the Pico-
series SDK reference documentation. Therefore, there are many situations
where the address is known ahead of time and needs to be loaded into a
register. The previous chapter covered how to load a 32-bit register with any
value, and this will work in this situation. Fortunately, many of the addresses
that need to be dealt with are simple, such as 0xd0000014, which is the
memory address to write for setting GPIO pins. Since most of the address is
Os, it can be loaded into a register with

MOV R2, #0xdO
LSL R2, R2, #24 @ becomes 0xd0000000
ADD R2, #0x14

Here, it took three 16-bit instructions to build the address into R2 and
didn’t require any additional memory. Code like this can be tricky, so make
sure it is documented. Next, a more straightforward way of building addresses
is looked at using an existing memory address in the program counter (PC).

PC-Relative Addressing

In Chapter 2, the LDR instruction was introduced to load the address of the
“Hello World” string. This was needed to pass the address of what to print to
the Pico-series SDK’s printf function. This is a simple and convenient example
of PC-relative addressing, since it doesn’t involve any other registers. As long
as the data is kept close to the code, it is painless. The disassembly of the LDR
instruction is shown below:

LDR RO, =helloworld
was formerly as follows:
1dr r0, [pc, #12] ; (10000370 <loop+0Oxe>)

Here is the instruction to load the address of the “helloworld” string into
RO. The Assembler knows the value of the program counter at this point, so it
can provide an offset to the correct memory address. Therefore, it’s called PC-



relative addressing. There’s a bit more complexity to this that will be
addressed soon that makes this much more flexible.

The offset above has 8 bits in the instruction with a range of 0-255. To get
a greater range, the target address has to be 32-bit aligned, which means the
effective range is multiplied by four, to produce a range of 0-1,020.

Note This can also be done relative to the stack pointer (SP); however,
the SP will be examined in detail in Chapter 7.

How to Load Data from Memory

In the HelloWorld program, the address was only needed to pass on to printf.
Generally, these addresses are used to load data into a register.
The simple form of LDR to load data given an address is

LDR{type} Rd, [Rm]
where type is one of the types listed in Table 6-3.

Table 6-3 The data types for the load/store
instructions

Type Meaning

B Unsigned byte

SB Signed byte

H Unsigned halfword (16 bits)
SH Signed halfword (16 bits)
Sw Signed word (32 bits)
<none> Unsigned word (32 bits)

Listing 6-2 demonstrates the two-step process to load a register. First of
all, R1 is loaded with the address of the data wanted, and then that register is
used to indirectly load register R2 with the actual data.

@ load the address of mynumber into R1
LDR R1, =mynumber
@ load the word stored at mynumber into R2
LDR R2, [R1]
.data
mynumber: .WORD 0x1234ABCD

Listing 6-2 Loading an address and then the value



Stepping through this in the debugger allows the process of loading
0x1234ABCD into R2 to be watched step by step.

Note The square bracket syntax represents indirect memory access. This
means load the data stored at the address pointed to by R1, not move the
contents of R1 into R2.

When “LDR r0, [pc, #12]” was encountered, it looked like loading the address
of pc+12 but was actually loading the data stored at pc+12, which is why
square brackets were used. This works since the Assembler placed the desired
address at this location.

This works, but it took two instructions to load R2 with the value from
memory: one to load the address and then one to load the data. When
programming a RISC processor, each instruction executes extremely quickly
but performs only a small chunk of work. This can be improved in some cases
for read-only quantities.

Optimizing Small Read-Only Data Access

In the previous section, first, the address of the memory was loaded before a
second LDR instruction could load the actual data. This is necessary if the
memory must be in SRAM; however, small bits of read-only memory can be
loaded with one LDR instruction from the program section, typically flashed
into the board’s ROM. This memory is only written to during the flash process
but is fine to use for read-only data, for example:

LDR RZ2, mynumber
B LOOP
mynumber: .WORD 0x1234ABCD

loads R2 with the value 0x1234ABCD using only one LDR instruction.
Notice that there is no equal sign before mynumber in the LDR instruction.
This tells the Assembler to load the quantity directly and not create an
indirection in the code section for it. The mynumber quantity must be
defined in code and be reasonably close to the LDR instruction.

Generally, this is the fastest way to load registers with specific 32-bit
numbers, and this is used extensively in Chapter 9.

Note Unless the program is relocated from ROM into RAM, this memory
location cannot be written to when the program runs.




As algorithms develop, an address is usually loaded once and used repeatedly,
so most accesses take one instruction once going, such as indexing through
memory in a loop.

Indexing Through Memory

All high-level programming languages have an array construct. They can
define an array of objects and then access the individual elements by index.
The high-level language will define the array with something like the
following:

DIM A[10] AS WORD

Then it will access the individual elements with statements like those in
Listing 6-3.

// Set the 5th element of the array to the value 6
A[5] = 6
// Set the variable X equal to the 3rd array element
X = A[3]
// Loop through all 10 elements
FOR I = 1 TO 10
// Set element I to I cubed
A[I] = I ** 3
NEXT I

Listing 6-3 Pseudo-code to loop through an array

The ARM Cortex-M-series instruction set provides support for doing these
sorts of operations:

1.
Define an array of ten words (4 bytes each):

arrl: .FILL 10, 4, O

2.
Load the array’s address into R1:

LDR R1, =arrl

Elements of this array can be accessed using LDR as demonstrated in
Listing 6-4 and graphically represented in Figure 6-1.

@ Load the first element



LDR R2, [R1]

@ Load element 3

@ The elements count from 0, so 2 1is

@ the third one. Each word is 4 bytes,
@ so we need to multiply by 4

LDR R2, [R1, #(2 * 4)]

Listing 6-4 Indexing into an array

LDR R2,[R1 + #(2 * 4)]

Memory
Offset
8 |——» 0x1008 | 0x18
A
0x18
R1 R2
Base
Register 0x1000 = 0Ox1000| Ox21

Figure 6-1 Graphical view of using R1 and an index to load R2

This is fine for accessing hard-coded elements, but what about via a
variable? A register can be used as demonstrated in Listing 6-5.

@ The 3rd element is still number 2

MOV R3, #(2 * 4)

@ Add the offset in R3 to Rl to get the element.
LDR R2, [R1, R3]

Listing 6-5 Using a register as an offset

When incrementing through memory in a loop, increment either the base
address or increment the index register. Incrementing the base address is
completed as follows:

LDR R2, [R1] @ load the element R1 points to



ADD R1, #4 @ since each element is 4 bytes

Incrementing an index is similar:

LDR R2, [R1l, R3] @ load the element RI1I+R3 points
to
ADD R3, #4 @ increment the index by the

element size

The first method has the advantage that it uses one fewer register and the
second that the base memory address isn’t destroyed by incrementing it.

Note The immediate value with the LDR instruction is only 8 bits, so can
only be offset by 255 bytes. Consequently, this is more often used to access
structure elements as demonstrated in Chapter 9.

How to Store a Register

The Store Register STR instruction is a mirror of the LDR instruction. All the
addressing modes discussed about for LDR work for STR. This is necessary
since in a load-store architecture, everything loaded must be stored after it is
processed in the CPU. The STR instruction was used a couple of times already
in examples.

The STR instruction is simpler than the LDR instruction, since it isn’t
involved with building addresses. The STR instruction only saves using
addresses that have already been constructed.

How to Convert to Uppercase

As an example of indexing through memory in loops, consider looping through
a string of ASCII bytes. To convert any lowercase characters to uppercase,
refer to Listing 6-6 that gives pseudo-code to do this.

i =20
DO
char = instr[i]
IF char >= 'a' AND char <= 'z' THEN
char = char - ('a' - 'A")
END IF

outstr[i] = char



i =1+ 1
UNTIL char == 0
PRINT outstr

Listing 6-6 Pseudo-code to convert a string to uppercase

This example uses NULL-terminated strings that are abundant in C
programming. These were used for printf strings and were created with the
.asciz directive. The string is the sequence of characters, followed by a NULL
(ASCII code 0 or \0) character. To process the string, simply loop until the
NULL character is encountered.

For and While loops have already been covered. The third common
structured programming loop is the DO/UNTIL loop that puts the condition at
the end of the loop. In this construct, the loop is always executed once. This is
desired, since if the string is empty the NULL character still needs to be
copied, so the output string will then be empty as well. The algorithm in
Listing 6-6 leaves the input string unchanged and produces a new output
string with the uppercase version of the input string. As is common in
Assembly Language processing, the logic is reversed to jump around the code
in the IF block. Listing 6-7 shows the updated pseudo-code.

IF char < 'a' GOTO continue

IF char > 'z' GOTO continue

char = char - ('a' - 'A")
continue: // the rest of the program

Listing 6-7 Pseudo-code on how we will implement the IF statement

Listing 6-8 is the Assembly Language code to convert a string to
uppercase.

@

@ Assembler program to convert a string to

@ all upper case.

@

@ RO - string parameter to printf

@ R3 - address of output string

@ R4 - address of input string

@ R5 - current character being processed

@

.thumb func @ Necessary because sdk

uses BLX



.global main @ Provide program
starting address to linker

main: BL stdio init all @ initialize uart or
usb
LDR R4, =instr @ start of input string
LDR R3, =outstr @ address of output
string
@ The loop is until byte pointed to by Rl is non-zero
loop: LDRB R5, [R4] @ load character
ADD R4, #1 @ increment pointer
@ If RS > '"z' then goto cont
CMP R5, #'z' @ is letter > 'z'?

BGT cont
@ Else if R5 < 'a' then goto end if

CMP R5, #'a'

BLT cont @ goto to end if
@ if we got here then the letter is lowercase, so
convert it.

SUB R5, #('a'-'A")
cont: @ end if

STRB R5, [R3] @ store character to
output str

ADD R3, #1 @ increment pointer

CMP R5, #0 @ stop on hitting a
null character

BNE loop @ loop if character

isn't null

@ Setup the parameters to printf our upper case string

loop2: LDR RO, =outstr @ string to print
BL printf @ Call printf to output
B loop?2
.data
instr: .asciz "This 1is our Test String that we will
convert.\n"
outstr: .fill 255, 1, O

Listing 6-8 Program to convert a string to uppercase



Note The provided source code combines samples of using data
directives, along with the various forms of the LDR and STR instructions
along with the uppercase conversion program.

This program is quite short, because besides all the comments and the code to
print the string, there are only 13 Assembly Language instructions to initialize
and execute the loop:

e Two instructions: Initialize the pointers for instr and outstr.

» Five instructions: Make up the if statement.

e Six instructions: For the loop, including loading a character, saving a
character, updating both pointers, checking for a null character, and
branching if not null.

It would be nice if STRB also set the condition flags. LDR and STR just
load and save. They don’t have the functionality to examine what they are
loading and saving, so they can’t set the CPSR. Therefore, there's the need for
the CMP instruction in the UNTIL part of the loop to test for NULL. In this
example, the LDRB and STRB instructions are used since the string is
processed byte by byte. To convert the letter to uppercase, use

SUB R5, #('a'-'A")

The lowercase characters have higher values than the uppercase
characters, so use an expression that the Assembler evaluates to get the
correct number to subtract. Look at Listing 6-9, an abbreviated disassembly of
the program.

100002b6: 4c08 ldr r4, [pc, #32] ¢
(100002d8 <cont+0x10>)
100002b8: 4pb08 ldr r3, [pc, #32] @

(100002dc <cont+0x14>)

100002ba <loop>:

100002ba: 7825 ldrb r5, [r4, #0]
100002bc: 3401 adds r4, #1

100002be: 2d7a cmp r5, #122 @
Ox7a

100002c0: dc02 bgt.n 100002c8 <cont>
100002c2: 2d61 cmp r5, #97 @

Oxol



100002c4: db00 blt.n 100002c8 <cont>

100002c6b: 3d20 subs r5, #32

100002c8 <cont>:

100002c8: 701d strb r5, [r3, #0]
100002ca: 3301 adds r3, #1

100002cc: 2d00 cmp r5, #0

100002ce: dlf4 bne.n 100002ba <loop>
100002d0: 4802 ldr r0, [pc, #8] @
(100002dc <cont+0x14>)

100002d2: f002 fecl bl 10003058

< _ wrap printf>

100002d8: 200005e7 .word 0x200005e7
100002dc: 20000616 .word 0x200006162000025f
<instr>:

2000028e <outstr>:

Listing 6-9 Disassembly of the uppercase program
The instruction is as follows:

LDR R4, =instr

is converted to the following:

1dr rd, [pc, #32] @ (100002d8 <cont+0x10>)

The comment documents that PC+32 is the address 0x100002d8. This is
calculated by taking the address of the next instruction (the one being
decoded as this one executes), which is at 0x100002b8, and adding 32 to get
the same 0x100002d8.

This shows how the Assembler added the literal for the address of the
string instr at the end of the code section. When the LDR is executed, it
accesses this literal and loads it into memory, and this provides the address
needed. The other literal added to the code section is the address of outstr.

To see this program in action, it is worthwhile to single step through it in
gdb. Watch the registers with the “i r” (info registers) command. To view instr
and outstr as the processing occurs, there are a couple of ways of doing it.
From the disassembly, the address of instr is 0x200005e7, so it can be viewed
with

(gdb) x /2s 0x200005e7



0x200005e7: "This is our Test String that we will
convert.\n"

0x20000616: "THI"

(gdb)

This is convenient since the x command knows how to format strings, but
it doesn’t know about labels. An alternative code is as below:

(gdb) p (char[10]) outstr
$8 = "TH\000\000\000\00O\N0O0O0ONOOONOOO"
(gdb)

The print (p) command knows about labels but doesn’t know about data
types. The label must be cast to tell it how to format the output. Gdb handles
this better with high-level languages, because it knows about the data types of
the variables. Next, two instructions for loading and storing multiple registers
at once are examined.

How to Load and Store Multiple Registers

There are multiple register versions of all the LDR and STR instructions. The
LDM and STM instructions take one register to use as the memory address
and then a list of low registers (R0-R7) to load or store. The data needs to be
contiguous, and the address register is updated to point after the data is
loaded or stored. For example, Listing 6-10 loads the address of a dword (the
address is still 32 bits) and then loads the dword into R2 and R3. Next, R2
and R3 are stored back into mydword?2.

LDR R1, =mydword

LDM R1!, {R2, R3} @ load R2 & R3 from
memory at Rl

STM R1!, {R2, R3} @ store R2 & R3 to
memory at Rl

.data
mydword: .DWORD 0x1234567887654321
mydword2: .DWORD 0xO0

Listing 6-10 Example of loading and storing multiple registers

The exclamation mark after the base register R1! indicates that this
register will be updated as part of this operation—adding the length of the
data to it. This is handy, since when used in a loop, an extra ADD instruction



isn’t needed to update the memory address. In this case, LDM loads mydword
into R2 and R3 incrementing R1 by 8 in the process. Next, the STM
instruction writes R2 and R3 into memory location mydword2, again
incrementing R1 by 8.

Using this instruction, all the low registers RO-R7 can be loaded or stored
in one instruction. If one of the registers in the list is the base register, then it
won’t be incremented as part of the instruction. The Assembler gives a
warning when this happens.

Summary

With this chapter completed, data can be loaded from memory, operated on in
the registers, and then saved back to memory. How the data load and store
instructions help with arrays of data and how they help us index through data
in loops were examined.

In the next chapter, how to make code reusable is looked at. After all,
wouldn’t the uppercase program be handy if it could be called whenever
needed?

Exercises

1.
Create a small program to try out all the data definition directives the
Assembler provides. Assemble the program and examine the data in the
disassembly listing. Add some align directives and examine how the data
moves around.

Explain how the LDR instruction lets any 32-bit address load in only one
16-bit instruction.

Write a program that converts a string to all lowercase.

Write a program that converts any non-alphabetic character in a NULL-
terminated string to a space.
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This chapter explores methods for organizing code into independent
units known as functions. In software development, the process often
begins with low-level components, which serve as the foundation for
building more complex applications. Reusable components can be
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called from any part of a program, promoting modularity and clarity.
Previous lessons covered looping, conditional logic, and arithmetic
operations. Now, attention turns to compartmentalizing code into
effective building blocks called stacks.

Stacks, a fundamental data structure in computer science, are used
for storing data on an as-needed basis. Building useful and reusable
functions requires a method for managing register usage so that
functions do not interfere with each other. Chapter 6 discussed storing
data in main memory, which persists for the duration of the program.
Small functions, such as those for converting strings to uppercase, may
need a few memory locations during execution, but this memory is no
longer required once the function completes. Stacks offer a solution for
managing register usage across function calls and supplying memory to
functions only for the length of their invocation.

Several low-level concepts are introduced at the outset, followed by
the process of combining them to effectively create and use functions.
The explanation begins with stacks and their implementation on the
Pico-series.

About Stacks on the Pico-series

In computer science, a stack is an area of memory where there are two
operations:

e push: Adds an element to the area
e pop: Returns and removes the element that was most recently added

This behavior is also called a LIFO (last in first out) queue.

When a program runs on the M-series CPU, the size of the stack is
configurable, by default 0x800 (2,048 words). In Chapter 2, it was
mentioned that register R13 had a special purpose as the stack pointer
(SP). This is why R13 is named SP in gdb, and typically it has a large
value, like 0x20041fe0. This is a pointer to the current stack location.

There are two instructions to save register values to the stack and
then restore those values. These are

PUSH {reglist}
POP {reglist}



The {reglist} parameter is a list of registers, containing a comma-
separated list of registers and register ranges. A register range is
something like R2-R4, which means R2, R3, and R4, for example:

PUSH {0,

POP {r0-r4,

r5-r7,
ro,

LR}
PC}

The registers are stored on the stack in numerical order, with the
lowest register at the lowest address. Any low register (R0-R7) as well
as LR can be included in the PUSH instruction and PC in the POP
instruction. Why this functionality for LR and PC is useful will be seen
shortly. Figure 7-1 shows the process of pushing a register onto the
stack, and Figure 7-2 shows the reverse operation of popping that value
off the stack.

Address

Stack

980

984

988

992

996

2
3
4
6
2
4

PUSH {R5}

RS = 1022

1000

SP=1000

Figure 7-1 Pushing R5 onto the stack

Address

Stack

980

984

988

B lWwir

992

996

[ael =)

1022|SP=996

1000

iy

POP {R4}

Figure 7-2 Popping R4 from the stack

Address Stack
980 2
984 3
988 4
992 6
oo 996 1022|SP=996
1000 4
Address Stack
980 2
984 3
988 4
992 6
996 1022 oo R4 = 1022 |
1000 4SP=1000

Before making use of these instructions, calling and returning from
functions need to be looked at.

How to Branch with Link

To call a function, the ability for the function to return execution to the
instruction after the point where the function was called is needed. This



is done with the other special register listed in Chapter 2, the link
register (LR), which is R14. To make use of LR, enter the Branch with
Link (BL) instruction, which is the same as the branch (B) instruction,
except it puts the address of the next instruction into LR before it
performs the branch, giving a mechanism to return from the function.

One way to return from a function is to use the Branch and
Exchange (BX) instruction. This branch instruction takes a register as
its argument, allowing it to branch to the address stored in LR to
continue processing after the function completes.

In Listing 7-1, the BL instruction stores the address of the following
MOV instruction into LR and then branches to myfunc. myfunc does
the useful work the function was written to do and then returns
execution to the caller by having BX branch to the location stored in LR,
which is the MOV instruction following the BL instruction.

@ ... other code
BL myfunc

MOV R1, #4

@ ... more code

myfunc: @ do some work
BX LR

Listing 7-1 Skeleton code to call a function and return

This works for functions that are one level deep, but what if the
function needs to call (nest) other functions?

About Nesting Function Calls

A function was successfully called and returned from, but the stack was
never used. Why introduce the stack first and then not use it? First of
all, think of what happens if during its processing myfunc calls another
function. This is fairly common, as code is written building on the
functionality previously developed.

If myfunc executes a BL instruction, then BL copies the next
address into LR overwriting the return address for myfunc; however,
myfunc won’t be able to return. What’s needed is a way to keep a chain



of return addresses as function after function is called. Rather, not a
chain of return addresses, but a stack of return addresses.

If myfunc is going to call other functions, then it needs to push LR
onto the stack as the first thing it does and pop it from the stack just
before it returns. However, there is a problem here, because LR can be
PUSH’ed but not POP’ed. Instead, the PC can be POP’ed. The reason is
that this saves an instruction on returning from functions. POP PC
loads the saved value of LR directly into the PC causing the processor to
jump to that memory location. Listing 7-2 shows this process,
demonstrating how convenient it is to store data to the stack that only
needs to exist for the duration of a function call.

@ ... other code
BL myfunc

MOV R1, #4

@ ... more code

myfunc: PUSH {LR}
@ do some work
BL myfunc?
@ do some more work...

POP {PC}
myfunc2: @ do some work
BX LR

Listing 7-2 Skeleton code for a function that calls another function

If a function, such as myfunc, calls other functions, then it must save
LR; however, if it doesn’t call other functions, such as myfunc2, then it
doesn’t need to save LR. Programmers often PUSH LR regardless, since
if the function is modified later to add a function call and the
programmer forgets to add LR to the list of saved registers, then the
program fails to return and either goes into an infinite loop or crashes.
The downside is that there is only so much bandwidth between the CPU
and memory, so to PUSH and POP more registers does take extra
execution cycles. The trade-off in speed versus maintainability is a
subjective decision depending on the circumstances.



When working in high-level programming languages, functions take
parameters and return results, and the same is true in Assembly
Language.

About Function Parameters and Return Values

In high-level languages, functions accept parameters and return results,
and Assembly Language programming operates similarly. Inventing
custom mechanisms for parameter passing and result returning can
prove counterproductive. Code often needs to interoperate with other
programming languages. For example, it may be necessary to call new,
efficient functions from C code or to invoke functions written in C, such
as those provided by the Pico-series SDK.

To facilitate this, there is a set of design patterns for calling
functions. All the code that follows these patterns will be able to
interoperate freely.

The caller passes the first four parameters in RO, R1, R2, and R3. If
there are additional parameters, then they are pushed onto the stack. If
there are only two parameters, then RO and R1 would be used. This
means the first four parameters are already loaded into registers and
ready to be processed. Additional parameters need to be popped from
the stack before being processed.

To return a value to the caller, place it in RO before returning. If
more data needs to be returned, then have one of the parameters be an
address to a memory location where the additional data can be placed.
This is the same as C when it returns data through call by reference
parameters.

The ARM M-series CPU only contains 16 registers, and most
instructions only work with eight of these. How then to ensure that the
calling function’s registers aren’t wiped out when a function is called?
This is the topic of the next section.

How to Manage the Registers

If a function is called, chances are it was written by a different
programmer, and what registers it uses may not be known. It would be
very inefficient if every register needed to be saved and restored every



time a function is called. As a result, there is a set of rules to govern
which registers a function can use and who is responsible for saving
each one:

RO-R3: These are the function parameters. The function can use
these for any other purpose modifying them freely. If the calling
routine needs them saved, it must save them itself.

R4-R11: These can be used freely by the called routine, but it is
responsible for saving them. That means the calling routine can
assume these registers are intact.

R12: This is the intra-procedure call scratch register and shouldn’t be
used. Some SDK functionality (like printf) will not work if this
register is modified.

SP: This can be freely used by the called routine. The routine must
POP the stack the same number of times that it PUSH’es, so it is
intact for the calling routine.

LR: The called routine must preserve this as discussed in the last
section.

CPSR: Neither routine can make any assumptions about the CPSR. As
far as the called routine is concerned, all the flags are unknown;
similarly, they are unknown to the caller when the function returns.

With all this, the function call algorithm can be summarized.

Summary of the Function Call Algorithm
Calling routine:

1.

If any of RO-R4 are needed, save them.

Move the first four parameters into registers RO-R4.
PUSH any additional parameters onto the stack.

Use BL to call the function.

Evaluate the return code in RO.



6. Restore any of R0-R4 that we saved.

Called function:

PUSH LR and R4-R11 onto the stack.
Perform the function body.
Put the return code into RO.

POP PC and R4-R11.

Note Saving all of LR and R4-R11 is the safest and most
maintainable practice. However, if some of these registers aren’t
used, skip saving them to save some execution time on function
entry and exit. Further, the PUSH and POP instructions do not work
with high registers R8-R11; therefore, to save these on the stack,
move them to low registers and then use PUSH and POP. This is one
reason why the high registers are rarely used.

To save some steps just use RO-R3 for function parameters and
return codes and short-term work; then the calling routine never has
to save and restore them around function calls.

All parameters are assumed to be 32 bits here. The rule is that if
something is less than 32 bits, place it in a 32-bit register or stack
location to pass it. If the parameter is larger than 32 bits, break it up
into multiple 32-bit chunks and treat it as multiple parameters. For
larger items, passing by reference is usually easier (passing an
address to the parameter).

Now that all the branch instructions have been introduced, some extra,
perhaps unexpected, functionality needs to be noted.

More on the Branch Instructions



These are the branch instructions supported by the ARM Cortex-M-
series CPU:

1.

B label

B{condition} label

BX Rm

BL label

BLX Rm

Numbers 1 and 2 are 16-bit instructions, and the label is an
offset from the PC. Their range is -2,048 to 2,046 from the
current program location. This makes them appropriate for loops
and jumps within single functions. This prevents writing large
single routines, which jump madly about.

Number 4 is one of the 32-bit instructions supported by the ARM
Cortex-M-series. This is a PC-relative offset, but the range is -
16,777,216 to 16,777,214, which is larger than the amount of
memory contained in either SRAM or flash on all current Pico-
series boards. This means any routine in the program or the SDK
can be called without issue.

Numbers 3 and 5 are the two forms that jump indirectly to an
address contained in register Rm. This register can be any high
or low register except the PC. Since the address is formed in a
register, it can be anywhere within the Pico-series’ full 32-bit
address space.

There is a bit more complexity around the BX and BLX instructions
that are covered next.

About the X Factor

The BX instruction is called the Branch and Exchange instruction,
which begs the question: what is being exchanged? In the full ARM A-



series processors, like those used in the Raspberry Pi 5, when running
in 32-bit mode, there are two separate sets of instructions:

1.
The regular 32-bit-long instructions

2.
The 16-bit “thumb” instructions that include a small number of 32-
bit instructions

The exchange in the BX and BLX instructions is the mechanism to
switch between these two instruction sets. This allows code of type 1 to
call code of type 2 and vice versa. The ARM M-series CPU only supports
type 2 instructions, but there is only one instruction set, so why discuss
this? The problem to be careful of is that if BX or BLX thinks that
instruction set type 1 is being switched to, then the Pico-series CPU
throws a hardware fault, and the program terminates.

Since all instructions must be aligned on either 32-bit or 16-bit
boundaries, the address of all instructions is even. This means the low-
order bit in the register containing the memory address to jump to is
unused.

To keep instructions compact the ARM processor uses every bit
possible, so it uses this bit to indicate the instruction set type. If the
low-order bit is even, then it switches to type 1, full 32-bit instruction
mode, and if the address is odd, then it switches to type 2, 16-bit thumb
mode. The problem is that addresses are usually even and if nothing is
done then the Assembler generates even addresses and the M-series
CPU generates a hardware fault when it tries to jump. This is why

.thumb func

must be placed before the definition of every function called by BX
or BLX.

The SDK calls main with a BLX instruction, and .thumb_func tells
the Assembler to set the low-order bit to one for this address.

In the uppercase function studied next, the BL instruction sets the
low-order bit in the return address it places in LR, so that it returns
correctly when BX is used.



Uppercase Revisited

Next, the uppercase example from Chapter 6 is reorganized as a proper
function. The function is moved into its own file, and CMakeLists.txt is
modified to include both the calling program and the uppercase
function. First, create a file called main.S containing Listing 7-3 for the
driving application.

@

@ Assembly Language program to convert a string to
@ all upper case by calling a function.

@

@ RO - parameters to printf

@ R1 - address of output string

@ RO - address of input string

@ R5 - current character being processed

@

.thumb func @ Necessary
because sdk uses BLX

.global main @ Provide program

starting address

main: BL stdio init all @ initialize uart
or usb
repeat:

LDR RO, =instr @ start of input
string

LDR R1, =outstr @ address of

output string
MOV R4, #12
MOV R5, #13

BL toupper

LDR RO, =outstr @ string to print
BL printf



B repeat @ loop forever

.data

instr: .asciz "This 1s our Test String that we
will convert.\n"

outstr: .fill 255, 1, 0O

Listing 7-3 Main program for the uppercase example

Now create a file called upper.S containing Listing 7-4, the
uppercase conversion function.

@

@ Assembly Language function to convert a string
to
@ all upper case.

@

@ R1 - address of output string

@ RO - address of input string

@ R4 - original output string for length calc.
@ R5 - current character being processed

@

.global toupper @ Allow other

files to call this routine

toupper: PUSH ({R4-R5} @ Save the
registers we use.

MOV R4, RI1
@ The loop is until byte pointed to by R1 is non-
Zero

loop: LDRB R5, [RO] @ load character
ADD RO, #1 @ increment instr
pointer
@ If R5 > '"z' then goto cont
CMP R5, #'z' @ is letter > 'z'?

BGT cont
@ Else if R5 < 'a' then goto end if
CMP R5, #'a'



BLT cont @ goto to end if
@ if we got here then the letter is lowercase, so

convert it.
SUB R5, #('a'-'A")

cont: @ end 1if

STRB R5, [R1] @ store character
to output str

ADD R1, #1 @ increment outstr
pointer

CMP R5, #0 @ stop on hitting
a null character

BNE loop @ loop 1if
character isn't null

SUB RO, R1, R4 @ get the length
by subtracting the pointers

POP {R4-R5} @ Restore the
register we use.

BX LR @ Return to caller

Listing 7-4 Function to convert strings to all uppercase

To build these, use the CMakeLists.txt file in Listing 7-5.

cmake minimum required (VERSION 3.13)
set (PICO_BOARD pico2 CACHE STRING "Board type")

include (pico sdk import.cmake)
project (Functions C CXX ASM)

set (CMAKE C STANDARD 11)
set (CMAKE CXX_ STANDARD 17)

pico _sdk init()
include directories (${CMAKE SOURCE DIR})

add executable (Functions
main.S
upper.S



)

pico enable stdio uart (Functions 1)
pico enable stdio usb (Functions 0)

pico add extra outputs (Functions)

target link libraries (Functions pico stdlib)

Listing 7-5 CMakelLists.txt for the uppercase function example

Step through the function call to examine the contents of important
registers and the stack. Set a breakpoint at main and single step
through the first couple of instructions and stop at the BL instruction.
The program sets R4 to 12 and R5 to 13, to make it easy to follow how
these are saved to the stack.

R4 Oxc 12

R5 Oxd 13

Sp 0x20082000 0x20082000

1r 0x10003093 268447891

pcC 0x10000280 0x10000280 <repeat+8>

Notice the BL instruction is at 0x10000280. Now single step again
to execute the BL instruction. Here are the same registers:

R4 Oxc 12

R5 Oxd 13

sp 0x20082000 0x20082000

1r 0x10000285 268436101

pcC 0x100002ea 0x100002ea <toupper>

The LR has been set to 0x10000285, which is the instruction after
the BL instruction (0x10000368+5); this is 4 bytes for the length of the
BL instruction plus 1 more to indicate to continue to use 16-bit
instructions. The PC is now 0x100002ea, pointing to the first
instruction in the toupper routine. The first instruction in toupper is
the PUSH instruction to save registers R4 and R5. Single step through
that instruction and examine the registers again.



R4 Oxc 12

R5 Oxd 13

sp 0x20081ff8 0x20081ff8

1r 0x10000285 268436101

pcC 0x100002ec 0x100002ec <toupper+2>

The stack pointer (SP) has been decreased by 8 bytes (two words)
to 0x20081ff8. None of the other registers have changed. PUSH’ing
registers onto the stack does not affect their values; it only saves them.
Looking at location 0x20081ff8 reveals the following:

((gdb) x /4xw 0x20081ff8
0x20081ff8: 0x0000000c 0x0000000d 0x00000000
0x00000000

Copies of registers R4 and R5 are now on the stack, and SP points to
the last item saved (and not the next free slot).

Note The toupper function doesn’t call any other functions, so LR
is not saved along with R4 and R5. If another function is ever called,
then LR will need to be added to the list. This version of toupper is
intended to be as fast as possible, so no extra code is added for
future maintainability and safety.

Most C programmers will object that this function is dangerous.
If the input string isn't NULL terminated, then it will overrun the
output string buffer, overwriting the memory past the end. The
solution is to pass in a third parameter with the buffer lengths and
check in the loop to stop at the end of the buffer if there is no NULL
character.

This routine only processes the core ASCII characters. It doesn’t
handle the localized characters like “€”, which won't be converted to
“E”.

This was a simple routine. Most functions have several internal
variables that require storage, often more than fit in the registers,
leading to the need for stack frames.



About Stack Frames

In the uppercase function, additional memory wasn’t needed since all
the work could be done with the available registers. When larger
functions are coded, more memory is often required for the variables.
Rather than add clutter to the .data section, these variables can be
stored on the stack.

PUSH’ing these variables on the stack isn’t practical, since they
usually need to be accessed in a random order, rather than the strict
LIFO protocol that PUSH/POP enforces.

To allocate space on the stack, use a subtract instruction to grow the
stack by the amount needed. Suppose three variables are needed, each
32-bit integers, say, a, b, and c. Therefore, 12 bytes need to be allocated
on the stack (3 variables x 4 bytes/word).

SUB SP, #12

This moves the stack pointer down by 12 bytes, providing a region
of memory on the stack to place the variables. Suppose a is in RO, b in
R1, and c in R2, these can then be stored using the following:

STR RO, [SP] @ Store a
STR R1, [SP, #4] @ Store Db
STR R2, [SP, #8] @ Store c

Before the end of the function, the following needs to be executed

ADD SP, #12

to release the variables from the stack. Remember, it is the
responsibility of a function to restore SP to its original state before
returning. Next, an example is presented.

Stack Frame Example

Listing 7-6 is a simple skeletal example of a function that creates three
variables on the stack and shows how to use them. It isn’t intended to
be a working program, just demonstrating how to define and access
variables.



Simple function that takes 2 parameters
VAR1 and VAR2. The function adds them,
storing the result in a variable SUM.
The function returns the sum.
It is assumed this function does other work,
including other functions.
Define our variables
.EQU VAR1, 0
.EQU VAR2, 4
.EQU SUM, 8
SUMFN: PUSH {R4-R7, LR}
SUB SP, #12 @ room for three 32-bit values
STR RO, [SP, #VAR1] @ save passed in param.
STR R1, [SP, #VAR2] @ save second param.
@ Do a bunch of other work, but don't change SP.
LDR R4, [SP, #VAR1]
LDR R5, [SP, #VAR2]
ADD R6, R4, R5
STR R6, [SP, #SUM]
@ Do other work
@ Function Epilog
LDR RO, [SP, #SUM] @ load sum to return
ADD SP, #12 @ Release local vars
POP {R4-R7, PC} @ Restore regs and return

® @ @ @ @ @ @

Listing 7-6 Simple skeletal function that demonstrates a stack frame

A new concept is introduced in this example—symbols via the .EQU
directive.

How to Define Symbols

This example introduced the .EQU Assembler directive. This directive
allows the definition of symbols that will be substituted by the
Assembler before generating the compiled code. This way, the code can
be made more readable. Otherwise, keeping track of which variable is
which on the stack makes the code hard to read and is error-prone.
With the .EQU directive, each variable’s offset is defined once. Sadly,



.EQU only defines numbers, so it can’t be used to define the whole “[SP,
#4]” string.

Functions aren’t the only way to make reusable code. Next, macros
are looked at.

How to Create Macros

Another way to make the uppercase loop into a reusable bit of code is
to use macros. The GNU Assembler has powerful macro capabilities. An
Assembler macro creates a copy of the code in each place where it is
called, substituting any parameters. Consider this alternative
implementation of the uppercase program, where the first file is
mainmacro.S containing the contents of Listing 7-7.

Assembler program to convert a string to
all upper case by calling a function.

RO - parameters to printf
R1 - address of output string
RO - address of input string

® ® @ @ @ @ @ @

.include "uppermacro.S"

.global mainmacro @ Provide
function starting address

mainmacro: PUSH ({LR}

toupper tststr, buffer

LDR RO, =buffer @ string to
print

BL printf

toupper tststr2, buffer



LDR RO, =buffer @ string to

print
BL printf
POP {PC}
.data
tststr: .asciz "This is our Test String that we
will convert.\n"
tststr2: .asciz "A second string to upper
case!!\n"
buffer: .fill 255, 1, O

Listing 7-7 Program to call the toupper macro

The mainmacro.S code is set up as a function and called from
main.S with

@ Call macro version.
BLL, mainmacro

This way only one project is needed for this chapter’s sample code.
These new files are also added to CMakeLists.txt.

The macro to uppercase the string is in uppermacro.S containing
Listing 7-8.

@

@ Assembler program to convert a string to

@ all uppercase (implemented as a macro)

@

@ R1 - address of output string

@ RO - address of input string

@ R2 - original output string for length calc.
@ R3 - current character being processed

@

@ label 1 = loop

(=]

label 2 = cont

.MACRO toupper instr, outstr



LDR RO, =\instr

LDR R1, =\outstr

MOV  R2, R1
@ The loop is until byte pointed to by R1 is non-
zZero

1: LDRB R3, [RO] @ load character
ADD RO, #1 @ increment instr

polnter

@ If R5 > 'z' then goto cont
CMP R3, #'z' @ is letter > 'z'?
BGT 2f

@ Else if R5 < 'a' then goto end if

CMP R3, #'a'

BLT 2f @ goto to end if
@ 1f we got here then the letter is lowercase, soO
convert 1t.

SUB R3, #('a'=-"A")

2: @ end if

STRB R3, [R1] @ store character to
output str

ADD R1, #1 @ increment outstr
pointer

CMP R3, #0 @ stop on hitting a
null character

BNE 1b @ loop if character
isn't null

SUB RO, R1, R2 @ get the length by
subtracting the pointers
. ENDM

Listing 7-8 Macro version of the toupper function
The first new concept is the .include directive.

About the Include Directive

The file uppermacro.S defines the macro to convert a string to
uppercase. The macro doesn’t generate any code; it just defines the
macro for the Assembler to insert wherever it is called from. This file



doesn’t generate an object (*.0) file; rather; it is included by whichever
file needs to use it.
The .include directive

.include "uppermacro.S3S"

takes the contents of this file and inserts it at this point, so that the
source file becomes larger. This is done before any other processing.
This is like the C #include preprocessor directive.

Now that a mechanism to include macros is set, how to define
macros is looked at next.

How to Define a Macro

A macro is defined with the .MACRO directive. This gives the name of
the macro and lists its parameters. The macro ends at the following
.ENDM directive. The form of the directive is

.MACRO macroname parameterl, parameter?2,

Within the macro, parameters are specified by preceding their name
with a backslash, for instance, \parameter1 to place the value of
parameterl. The toupper macro defines two parameters instr and
outstr:

.MACRO toupper instr, outstr

How the parameters are used in the code can be seen with \instr
and \outstr. These are text substitutions and need to result in correct
Assembly Language syntax, or an error will result. In the code, the
labels are replaced by numbers. Why is that?

About Labels

The labels “loop” and “cont” are replaced with the labels “1” and “2".
This takes away from the readability of the program. The reason to do
this is that if the original labels were left in place, an error that a label is
defined more than once would occur if the macro is used more than
once. The strategy here is that the Assembler lets numeric labels be
defined as many times as needed. To reference them in the code, use



BGT 2f
BNE 1b @ loop if character isn't null

The f after the 2 means the next label 2 is in the forward direction.
The 1b means the next label 1 is in the backward direction.

To prove that this works, toupper is called twice in mainmacro.S to
show that everything works and that this macro can be reused as many
times as needed. But why use macros over functions?

Why Macros?

Macros substitute a copy of the code at every point they’re used. This
makes an executable file larger. Look at the disassembly file for this
project and notice the two copies of code inserted. With functions,
there is no extra code generated each time. This is why functions are
appealing, even with the extra work of dealing with the stack.

The reason macros get used is because of performance. The Pico-
series runs at 133MHz or 150MHz, which isn’t that fast by modern
standards. Remember that whenever a branch is taken, the execution
pipeline needs to be restarted, making branching an expensive
instruction. With macros, the BL branch to call the function is
eliminated along with the BX branch to return. The PUSH and POP
instructions to save and restore any registers used are also eliminated.
If a macro is small and used a lot, there could be considerable execution
time savings.

Note Notice in the macro implementation of toupper that only
registers RO-R3 are used. This is to avoid using any registers
important to the caller. There is no standard on how to regulate
register usage with macros, like there is with functions, so it is up to
the programmer to avoid conflicts and strange bugs.

Summary

This chapter covered the ARM stack and how it is used to help
implement functions. How to write and call functions was covered as a
first step to creating libraries of reusable code. How to manage register



usage was studied, so there aren’t any conflicts between calling
programs and functions. The function calling protocol was learned that
allows interoperation with other programming languages. Defining
stack-based storage for local variables was looked at along with how to
use this memory.

Finally, the GNU Assembler’s macro ability was covered as an
alternative to functions in certain performance-critical applications.

Next, in Chapter 8, more detail are provided about calling and being
called by C routines, in particular, how to interact with the Pico-series
SDK.

Exercises

1.
Suppose a function uses registers R4, R5, R6, R8, and R9. Further,
this function calls other functions. Code the prologue and epilogue
of this function to store and restore the correct registers to/from
the stack. Be careful how the high registers R8 and R9 are handled.

Write a function to convert text to all lowercase. Have this function
in one file and a main program in another file. In the main program,
call the function three times with different test strings.

Convert the lowercase program in Exercise 2 to a macro. Have it
run on the same three test strings to ensure it works properly.

Why does the function calling protocol have some registers that
need to be saved by the caller and some by the callee? Why not
make all saves by one or the other?

Why would the SDK call the main routine with a BLX instruction
rather than a BL instruction?
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8. Interacting with C and the SDK
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How to Wire Flashing LEDs

How to Flash LEDs with the SDK

How to Call Assembly Routines from C

How to Embed Assembly Code Inside C Code
Summary

Exercises

In the early days of microcomputers, like the Apple I, people wrote
complete applications in Assembly Language, such as the first
spreadsheet program VisiCalc. Many video games were written in
Assembly Language to squeeze every bit of performance possible out of
the hardware. Modern compilers, like the GNU C compiler, generate
adequate code, and microcontrollers, like the Pico-series, are much
faster. As a result, most applications are written in a collection of
programming languages, where each excels at a specific function.

The Pico-series SDK contains a wealth of efficient code, offering
extensive resources that can be leveraged instead of developing
everything from scratch. Most of the SDK is implemented in C, with
numerous Assembly Language routines available for further study.

This chapter looks at using components written in C/C++ from
Assembly Language code and at how other languages can make use of
the fast-efficient code being written in Assembly Language.

This chapter uses the Raspberry Pi Pico-series’ hardware 1/0
capabilities. How to set up three flashing LEDs is described, and then
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how to control them using different techniques is covered over the
following two chapters. This chapter shows how to control the LEDs
using the Pico-series SDK. This provides more experience using C
functions and the extra complexity present in the SDK.

How to Wire Flashing LEDs

Before writing programs, circuitry needs to be wired to connect three
LEDs to a breadboard. This project requires

e Three 2201 resistors (red, red, black)

e Three LEDs (preferably of different colors, such as red, blue, and
green)

e Four connecting differently colored wires

These instructions assume that the pins are already soldered to the
Pico-series board that has been plugged into a breadboard as outlined
in Chapter 1. These parts are typically included in any Raspberry Pi or
Arduino electronics starter Kkit.

Each of three LEDs is connected to a GPIO pin, in this case 18, 19,
and 20, and then to ground through a resistor. The resistor is needed
because the GPIO is specified to keep the current under 16mA, or the
circuits can be damaged. Most kits come with several 22002 resistors.
By Ohm’s law, [ = V/R, these would cause the current to be 3.3V /2200 =
15mA, so just right. The resistor needs to be in series with the LED,
since the LED’s resistance is quite low (typically around 13Q and
variable).

Warning LEDs have both a positive and a negative side. The
positive side must connect to the GPIO pin; reversing it could
damage the LED.

Note The GPIO pins are numbered differently internally and
externally. When the program accesses GPIO 18 internally, this is
wired to the external pin 24 on a Raspberry Pi Pico 2 board. Check
the pinout diagram for whichever board being used, to ensure the
correct pin is wired up.




Figure 8-1 shows how the LEDs and resistors are wired on a
breadboard.
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Figure 8-1 Breadboard with LEDs and resistors installed

Figure 8-2 shows a schematic of the flashing LEDs hardware to help
with setting it up.
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Figure 8-2 Schematic for the flashing LEDs



With the hardware wired, it’s time to write some code.

How to Flash LEDs with the SDK

In this chapter, the LEDs are flashed using functions in the Pico-series
SDK. In later chapters, this process is repeated using Assembly
Language to write to the hardware directly and then using the Pico-
series’ PIO coprocessors to offload the work from the CPU. Using the
SDK is easiest, since it provides well-tested, ready-to-use functions that
hide the complexities of directly interacting with hardware devices.
Later parts of the program that aren’t performant can be identified and
rewritten in Assembly Language or use coprocessors to create a better
experience.

In this example, four SDK functions are used:

void gpio_init (uint gpio): Initialize a pin for GP10. Many pins have
multiple functions.

static void gpio_set_dir (uint gpio, bool out): Set the direction of the
pin, either input or output.

static void gpio_put (uint gpio, bool value): Set a GPIO pin either
high or low.

void sleep_ms (uint32_t ms): Sleep for the specified number of
milliseconds.

C functions follow the calling convention covered in Chapter 7;
therefore, the first parameter is placed in RO and the second parameter
in R1. None of these functions return a value, so RO doesn’t need to be
checked after making the call. Basically, the following is done:

1.
Initialize the three GPIO pins 18, 19, and 20.

2.
Sequentially turn on a LED.

3.
Sleep for one-fifth of a second.

4. Turn off the LED.



Listing 8-1 contains the Assembly Language source code for this,
which should be placed in the file flashledssdk.S.

@ Assembler program to flash three LEDs connected

@ the Raspberry Pi Pico GPIO port using the Pico

@

to

SDK.

G
.EQU
.EQU
.EQU
.EQU

.EQU

.thumb func

.global main

main:
MOV
BL
MOV
MOV
BL
MOV
BL
MOV
MOV
BL
MOV
BL
MOV
MOV
BL

LED PIN1, 18
LED PIN2, 19
LED PIN3, 20
GPIO OUT, 1
sleep time, 200

@ Necessary because sdk uses BLX
@ Provide program starting address

RO, #LED PIN1
gpio 1init

RO, #LED PIN1

R1, #GPIO OUT
link gpilo set dir
RO, #LED PIN2
gpio init

RO, #LED PIN2

R1, #GPIO OUT
link gpio set dir
RO, #LED PIN3
gpio init

RO, #LED PIN3

R1, #GPIO OUT
link gpilo set dir



loop: MOV
MOV
BL
LDR
BL
MOV
MOV
BL
MOV
MOV
BL
LDR
BL
MOV
MOV
BL
MOV
MOV
BL
LDR
BL
MOV
MOV
BL
B

Listing 8-1 Assembly Language source code to flash the LEDs using the SDK

This program calls link_gpio_put and link_gpio_set_dir rather than
gpio_put and gpio_set_dir directly. Look in the SDK, to find gpio_put
defined in gpio.h as

static 1nline void gpio set dir (uint gpio, bool

out) {

uint32 t mask = lul << gpio;
if (out)
gpio set dir out masked (mask);

else

RO, #LED PIN1

R1, #1

link gpio put

RO, =sleep time

sleep ms

RO, #LED PIN1

R1, #0

link gpio put

RO, #LED PIN2

R1, #1

link gpio put

RO, =sleep time

sleep ms

RO, #LED PIN2

R1, #0

link gpio put

RO, #LED PIN3

R1, #1

link gpio put

RO, =sleep time

sleep ms

RO, #LED PIN3

R1, #0

link gpio put
loop



gpio set dir in masked (mask);

The problem is that this function is defined as inline. This tells the C
compiler that this isn’t a function and to insert the code inline wherever
it is called. This is similar to the macros in Chapter 7. Since this isn't a
function, just a snippet of C code, it can’t be called directly from the
Assembly Language code, because there is nothing to call. This leads to
Listing 8-2, where a C file can be provided that wraps this inline C code
and exposes them as functions that can be called.

/* C wrapper functions for the RP2040 SDK
* Incline functions gpio set dir and gpio put.

*/
#include "hardware/gpio.h"

void link gpio set dir(int pin, int dir)
{

gpio set dir(pin, dir);
}

void link gpio put (int pin, int value)
{
gpio put (pin, value);

Listing 8-2 C wrapper functions for the inline code we need from the SDK

Note This is preferable to editing the source code in the SDK to
remove the inline keyword, as it would cause problems getting
newer versions of the SDK.

The CMakelLists.txt file is given in Listing 8-3 and is standard.
cmake minimum required (VERSION 3.13)

set (PICO BOARD pico2 CACHE STRING "Board type")



include (pico sdk import.cmake)
project (test project C CXX ASM)

set (CMAKE C STANDARD 11)
set (CMAKE CXX STANDARD 17)

pico sdk init ()
include directories (${CMAKE SOURCE DIR})

add executable (FlashLEDsSDK
flashledssdk.S
sdklink.c

)

pico enable stdio uart (FlashLEDsSDK 1)
pico add extra outputs (FlashLEDsSDK)

target link libraries(FlashLEDsSDK pico stdlib)

Listing 8-3 CMakelLists.txt file for this project

With these files, follow the procedures in Chapter 1 to build the uf2
file and copy it to the Raspberry Pi Pico. The LEDs should flash in turn
quickly repeatedly. If the program doesn’t work, then create a debug
build and step through the program in gdb.

New approaches to functions like gpio_put will be covered in the
following chapters, but initialization functions like gpio_init are
typically not time critical and using the SDK function is fine.

How to Call Assembly Routines from C

A typical scenario is to write most of an application in C and then call
Assembly Language routines in specific time-critical use cases.
Following the function calling protocol from Chapter 7, C won'’t be able
to tell the difference between Assembly Language functions and any
other functions written in C.



An example is to call the toupper function from Chapter 7 from C.
Listing 8-4 contains the C code for uppertst.c to call this Assembly
Language function.

//
// C program to call the Assembly Language
// toupper routine.

//

#include <stdio.h>
#include "pico/stdlib.h"

extern int mytoupper ( char *, char * );

#define MAX BUFFSIZE 255
void main ()

{

char *str = "This is a test.";
char outBuf [MAX_BUFFSIZE] ;
int len;

stdio 1init all();

while( 1 )

{
len = mytoupper( str, outBuf );
printf ("Before str: %s\n", str);
printf ("After str: %$s\n", outBuf);
printf ("Str len = %d\n", len);

Listing 8-4 Main program to show calling the toupper function from C

The name of the toupper function is changed to mytoupper, since
there is already a toupper function in the C runtime. Without this
change a multiple-definition error results. This was done in both the C
and the Assembly Language code; otherwise, the function is the same



as in Chapter 7. The CMakelLists.txt file is as expected simply listing
both upper.S and uppertst.c.

Define the parameters and return code for the function to the C
compiler with

extern int mytoupper ( char *, char * );

This should be familiar to all C programmers; this must be done for
C functions as well. Usually, all these definitions are gathered together
and put into a header (.h) file.

When the program is run, the string is converted to uppercase as
expected, but the string length appears one greater than anticipated.
That is because the length includes the NULL character, which isn’t the
C standard. If this routine is used a lot with C, subtract 1, so that the
length is consistent with other C runtime routines.

How to Embed Assembly Code Inside C Code

The GNU C compiler allows Assembly Language code to be embedded
in the middle of C code. It contains features to interact with C variables,
and labels, and cooperate with the C compiler and optimizer for
register usage. Listing 8-5 is a simple example, where the core
algorithm for the toupper function is embedded inside the C program.

//
// C program to embed the Assembly Language
// toupper routine inline.

//

#include <stdio.h>
#include "pico/stdlib.h"

#define MAX BUFFSIZE 255
volid main ()

{

char *str = "This is a test.";
char outBuf [MAX_BUFFSIZE] ;
int len;



stdio init all();

while( 1 )
{

asm

"MOV RO, %1\n"
"MOV R4, $2\n"
"loop: LDRB R5, [RO]\n"
"ADD RO, #1\n"
"CMP R5, #'z'\n"
"BGT cont\n"
"CMP R5, #'a'\n"
"BLT cont\n"
"SUB R5, #('a'-'"A")\n"
"cont: STRB R5, [%2]1\n"
"ADD %2, #1\n"
"CMP R5, #0\n"
"BNE loop\n"
"SUB RO, %2, R4\n"
"MOV %0, RO\n"
"MOV %2, R4"
: "=r" (len)
"r" (str), "r" (outBuf)
"r4", "r5", "rQ"
) ;
printf ("Before str: %s\n", str);

printf ("After str: %s\n", outBuf);
printf ("Str len = %d\n", len);

}

Listing 8-5 Embedding our Assembly routine directly in C code

The asm statement allows Assembly Language code to be
embedded directly into C code. With this, an arbitrary mixture of C and
Assembly Language code can be written. The comments are stripped



out from the Assembly Language code, so the structure of the C and
Assembly Language is easier to read. The general form of the asm
statement is

asm asm-qualifiers ( AssemblerTemplate
OutputOperands
[ : InputOperands]
[ : Clobbers ] ]
[ : GotoLabels])

The parameters are

e AssemblerTemplate: A C string containing the Assembly code.
There are macro substitutions that start with % to let the C compiler
insert the inputs and outputs.

e QutputOperands: A list of variables or registers returned from the
code. This is required, since it is expected that the routine does
something. In this case this is “=r” (len) where the =r means an
output register and that it goes into the C variable len.

e InputOperands: A list of input variables or registers used by the
routine, in this case “r” (str); “r’ (outBuf) means two registers are
needed—one holds str and one holds outBuf. It is fortunate that C
string variables hold the address of the string, which is what is
needed in the register. These registers need to be preserved. The C
compiler expects them to be unchanged once the code exits and any
changes cause bugs.

e Clobbers: A list of registers used and clobbered when the code runs,
in this case “r0”, “r4”, and “r5”.

e GotoLabels: A list of C program labels that the code might want to
jump to. Usually, this is an error exit. If a C label is jumped to, warn
the compiler with a goto asm-qualifier.

The input and output operands can be labeled; this wasn’t done,
which means the compiler will assign names %0, %1, ... as used in the
Assembly Language code.

If the program is disassembled, notice that the C compiler avoids
using registers R0, R4, and R5 entirely, leaving them open to use. It
loads input registers from the variables on the stack, before the code



executes, and then copies a return value from the assigned register to
the variable len on the stack. It doesn’t give the same registers
originally used, but that isn’t a problem.

The input registers for instr and outstr can’t be modified. For
outstr, since its value was saved to R4 for the length calculation, it can
be restored at the end. instr is moved into R0 and incremented there,
so that the input register is preserved.

Note If too many registers are specified, then the inputs will be
received in high registers. How data is moved in and out of the lower
registers for processing needs to be managed. In the case of this
program, it is fine when built for debug, but when built for nodebug,
%0 ends up in R8. This is why the final subtraction is to RO and then
that is moved to %0.

This routine is straightforward and doesn’t have any ill side effects. If
the Assembly Language code is accessing hardware registers, add a
volatile keyword to the asm statement to make the C compiler more
conservative on any assumptions it makes about the code. Otherwise,
the C compiler doesn’t know hardware registers can change
independently from this code and the optimizer might remove
important code.

Summary

This chapter studied calling C functions from Assembly Language code.
The functions in the RP2040’s SDK were used to access the GPIO pins,
and how to deal with inline C functions was covered. Then the reverse
of calling the Assembly Language uppercase function from a C main
program was written. Next, the Assembly Language code was
embedded directly inline into C code.

Accessing the RP2040’s hardware indirectly through the SDK works
and is quick, but Assembly Language programmers like to access the
hardware directly, which is the topic of Chapter 9.

Exercises



Create a C program to call the lowercase routine from Chapter 7,
Exercise 2, and print out some test cases.

Take the lowercase routine from Chapter 7, Exercise 2, and embed
it in C code using an asm statement.

Review the main routine in the .dis file for the embedded Assembly
Language. See how the main routine C code is converted to
Assembly Language, saves the registers, creates a stack frame, and
passes the addresses of instr and outstr.

' Modify the flashing lights program to flash the lights in different
patterns and vary the sleep times. Would this be easier if the
handling of each LED was moved into a function?
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Chapter 8 interacted with external hardware devices connected to the
GPIO pins using the Pico-series SDK. This chapter looks at interacting
with the hardware directly. No new Assembly Language instructions
need to be learned, because access to the hardware is accomplished
with the memory load/store instructions previously studied. All
hardware access is via special memory addresses connected to
hardware devices, which respond based on the data written to them
rather than being connected to memory. Similarly, hardware devices
provide data from external sources when these addresses are read.


https://doi.org/10.1007/979-8-8688-2202-5_9

Before delving into individual memory addresses directly, a lay of
the land is needed. This chapter gives details about the Pico-series’
memory map.

About the Pico-series Memory Map

The RP2040/RP2350 contains several types of memory plus a large
selection of hardware memory-mapped registers:

e Two banks of read-only memory

e 264Kkb or 520kb of read-write memory

e Several large banks of memory-mapped hardware registers that
control the hardware or send/receive data to/from it

Table 9-1 is a high-level map of the main memory areas.

Table 9-1 High-level memory map of the RP2040/RP2350

Base Purpose
Address

0x00000000 | On-chip boot ROM

0x10000000 | Off-chip flash memory 16MB max

0x20000000 | On-chip SRAM

0x40000000 | Hardware registers for peripherals connected to the Advanced Peripheral Bus
(APB) Bridge

0x50000000 | Hardware registers for devices connected to AHB

0xd0000000 | Hardware registers connected directly to CPU such as SIO

0xe0000000 | Arm Cortex-M-series processor hardware registers

When looking at the disassembly for one of the programs, all the
code addresses were in the 0x10000000 range, indicating the program
is running from the Pico’s ROM. This preserves the program between
power resets and is what the boot loader will run on power-up. The
data variables and the stack are in the 0x20000000 range, indicating
these aren’t stored between power resets, but are easy to write to. The
memory addresses from the other sets will be used shortly. This is how
the programs view the various hardware devices connected to the Pico-



series as special memory addresses. Next, a friendlier way to refer to
these memory addresses and registers is looked at.

About C Header Files

It is poor programming to use magic numbers in code. Therefore, when
programming the SIO pins, don’t just plunk the number 0xd0000000 in
the code; instead, use a symbolic reference. These don't need to be
defined in the code using .EQU statements, as these are all defined in
the SDK. For instance, 0xd0000000 is defined in
src/rp2040/hardware_regs/include/hardware/regs/addressmap.
h with

#define SIO BASE u(0xd0000000)

The file addressmap.h is a C header file, and #define is a C
preprocessor definition. The C preprocessor replaces SIO_BASE with
_u(0xd0000000) everywhere before compiling the source code. But the
code is written in Assembly Language. How can C header files be used?

This is why the source files are named with an uppercase .S
extension. The .S instructs the GNU Assembler to accept and process C
source files. If a lowercase .s extension is used, then the GNU Assembler
only accepts strict Assembly Language and spits out lots of error
messages. The C header file must be a simple set of defines to work; if it
defines C functions or structures, then the resulting code won’t compile.

The designers of the Pico-series SDK kept Assembly Language
programmers in mind when defining header files; header files can be
safely included for the various memory locations and values of all the
hundreds of hardware memory registers.

In this case, the SIO_BASE definition is used with

gpliobase: .word SIO BASE @ base of the GPIO
registers

Note The name is SIO_BASE rather than GPIO_BASE to emphasize
programming through the single-cycle 10 controller. How this helps
will be seen shortly.




These are the basics for programming access. Next, hardware devices
are connected to the outside world via the pins exposed on the boards,
specifically, to the Raspberry Pi Pico-series. For directions on how to
connect other manufacturers’ RP2040/RP2350 boards, refer to their
documentation.

About the Raspberry Pi Pico Pins

Notice that in a pinout for the Raspberry Pi Pico’s external pins, each
pin is labeled with several functions. The various peripherals contained
in the RP2040/RP2350 are connected to the external pins through the
Advanced Peripheral Bus (APB). The APB has a programmable
multiplexor where each peripheral is specified to connect to each pin.
Each pin can be programmed to do one of up to nine functions. Which
nine functions are possible for each pin is hard-coded in the hardware,
but much flexibility is allowed in designing projects.

Note The ground and power pins are fixed and not connected to
the APB.

For example, for GPIO pins 18, 19, and 20 that were connected to LEDs
in Chapter 8, Table 9-2 lists their other available functions.

Table 9-2 Functions for pins 18, 19, and 20

Pin |F1 F2 F3 F4 F5 [F6 |[F7 |F8 F9
18 |SPIO UARTO 12C1 PWM1 |SIO|PIOO|PIO1 USB OVCUR
SCK CTS SDA A DET
19 |SPIOTX |UARTO [2C1 SCL [PWM1 |SIO |PIOO|PIO1 USB VBUS DET
RTS B
20 |SPIORX [UART1TX |12CO PWM2 |SIO |PIOO|PIO1|CLOCK USB VBUSEN
SDA A GPINO

Table 9-3 lists the hardware functions with a quick description of
their purpose.

Table 9-3 Descriptions of hardware peripheral functions



Peripheral | Description

SPI Serial Peripheral Interface. A synchronous serial communication interface
specification used for short-distance communication.

UART Universal Asynchronous Receiver/Transmitter. For asynchronous serial
communication in which the transmission speeds are configurable.

12C Inter-Integrated Circuit. A synchronous, multi-master, multi-slave, packet-
switched, single-ended, serial communication bus.

PWM Pulse-Width Modulation. A method of reducing the average power delivered by an
electrical signal, by turning on and off with a variable pulse width. It is commonly
used to control motors.

SIO Single-cycle 10. Software control of GPIO pins.

PIO Programmable 10. Connected to one of the P10 coprocessors.

CLOCK General-purpose clock inputs. Can be routed to several internal clock domains on
GPIN the RP2040/RP2350.

CLOCK General-purpose clock outputs. Can drive several internal clocks onto external pins.
GPOUT

USB USB power control signals to/from the internal USB controller.

OVCUR

To flash the LEDs, first set the function of pins 18, 19, and 20 to SIO
so the program can control them.

How to Set a Pin Function

To configure a pin as a general-purpose programmable pin, set a
hardware register to program the APB to route SIO functionality to the
external pin. The addresses of all the various banks of hardware
registers are defined in addressmap.h. The define to use is

#define TO BANKO BASE u(0x40014000)

For each pin, there are two 32-bit registers:

e Status register
e Control register

This means to access the register:

1.
Multiply the pin number by 8. Multiply by 8 by shifting the pin
number left by 3 bits.



2. Add that to the base to get the registers for the desired pin. This
gives the address of the set of registers for the target pin.

Access the control register by providing the offset
I0_BANKO_GPIOO_CTRL_OFFSET, from io_bank0.h, to the STR
instruction.

To configure the APB, write I0_BANKO_GPIO3_
CTRL_FUNCSEL_VALUE_SIO_3 (value 5) from io_bank0.h to the
control register.

The code to do this follows in Listing 9-1.

#include "hardware/regs/addressmap.h"
#include "hardware/regs/io bankO.h"

LDR R2, iobankO0 @ address we
want

LSL RO, #3 @ each GPIO
has 8 bytes of registers

ADD R2, RO @ add the
offset for the pin number

MOV  R1,

#I0 BANKO GPIO3 CTRL FUNCSEL VALUE SIO 3
STR R1, [R2, #IO BANKO GPIO0 CTRL OFFSET]

iobankO: .WORD IO BANKO BASE @ base of io
config registers

Listing 9-1 Code to set the GPIO pin to the SIO function, where the pin is provided in RO

Note iobank0 must be defined in the code section, not the data
section, so it can be loaded with one LDR instruction.

Programming this control register is easy since only a value is required
to be written to it. This isn’t true, in general, and the Pico-series
provides help to make programming hardware registers easier, which is
shown next.



About Hardware Registers and Concurrency

Most hardware registers are 32 bits, and each bit performs a different
function. For instance, the register to turn on and off the GPIO pins has
all the external pins in one register, and to set or clear pins, be careful
not to mess with other bits. The logic to do this resembles

LDR R1, [R2] @ R2 is the address of the
hardware register

ORR R1, R3 @ R3 has one bit set

STR R1, [R2] @ Write the value back to the

register with one bit altered

There are problems with this; besides taking three instructions and,
perhaps, being error-prone, the big problem is concurrency. The Pico-
series has two CPU cores, so separate functions could run on each CPU
core performing different operations on different SIO pins.

If one CPU does the LDR, but then the other CPU does the LDR
before the first CPU does the STR, then the second CPU will undo what
the first CPU does when it performs its STR instruction, as shown in
Figure 9-1.

CPU1 CPU 2 Comment
LDR R1, [R2]
LDR R1, [R2] Both CPUs have read the same value of the register
ORRR1,R3 ORR R1, R3 Both CPUs set their separate bits
STR R1, [R2] CPU1 write back what it wants
STR R1, [R2] CPU2 overwrites CPU1's work

Figure 9-1 Flow of two CPUs with a concurrency problem

The Pico-series solves this problem by having separate registers for
performing different operations on the registers. In the case of setting
or clearing SIO pins, there are two registers:

e One to set the pins: To set one or more pins, use the set register.
Each bit is for a different pin. Just write a value to the set register,
where any one bit in the value will turn on that SIO pin. Any zero bits
written are ignored, and those pins are left alone.



e One to clear the pins: To clear pins, there is a clear (CLR) register
where any 1 bit will clear a GPIO pin and again zeroes are ignored.

This scheme is the reason for the name SIO for single-cycle /0,
since only one instruction is needed and thus one clock cycle sets or
clears an I/0 pin. On some pins there is also an XOR register, which
only sets the value if the pin isn’t already set, perhaps saving the
hardware work. These registers are laid out in two patterns:

1.
For Raspberry-designed devices like SIO, they are in consecutive

registers, where each one is defined in a header file.

For devices taken from an ARM chip design library, Raspberry
provides aliases to the ARM defined registers, which add SIO
functionality. These bits are defined in addressmap.h starting with
REG_ALIAS; an example of this is provided when configuring the
pin’s external pad.

After the function of the pins is programmed, the pads must be
initialized.

About Programming the Pads

The APB is connected to the outside world with pads. Pads provide
electrical isolation and control voltage and current levels. Program
these to turn them on, for both input and output. In this chapter,
instructions for programming output are given, but it doesn’t hurt to
turn both on. Strangely enough, input is turned on with input enable;
however, turning off the output with output disable means only setting
the input enable bit to configure the pad, as follows in Listing 9-2.

LDR R2, padsbank0

LSL R3, RO, #2 @ pin * 4 for register
address
ADD R2, R3 @ Actual set of

registers for pin
MOV ~ R1, #PADS BANKO GPIOO IE BITS
LDR R4, setoffset



ORR  R2, R4
STR  R1, [R2, #PADS BANKO GPIOO OFFSET]

padsbank0O: .word PADS BANKO BASE
setoffset: .word REG_ALIAS SET BITS

Listing 9-2 How to configure a pad

Notice how the address of padsbankO is loaded, to add in the offset
for the GPIO pin desired; then ORR with the bit gives the alias to the set
single-cycle register.

About RP2350 Pad Isolation

The RP2350 introduced pad isolation, which isolates the pad
electrically when the CPU is changing power states. When initialized
the pads are electrically isolated from the outside world. When the pads
are configured, they need to have this isolation removed before they
can be used. To do this the isolation bit in the pad control register needs
to be cleared. This is done with the code in Listing 9-3.

#if HAS PADS BANKO ISOLATION
@ Remove pad isolation now that the correct
peripheral is set

LDR R2, padsbank0

LSL R3, RO, #2 @ pin * 4 for
register address
ADD R2, R3 @ Actual set of

registers for pin

LDR R4, clearoffset

ADD R2, R4

LDR R1, PBRGIB

STR R1, [R2, #PADS_BANKO_GPIOO_OFFSET]
#fendif

Listing 9-3 Code to remove pad isolation

Notice the #if statement, which the SDK CMake system will define
HAS_PADS_BANKO_ISOLATION for any board with pad isolation such as



the RP2350. Using this if allows the code to be complied and to work
for either the Pico 1 or Pico 2.

How to Initialize SIO

In this next step, the SIO device is initialized, preparing the pin for
output and turning it off (in case it was previously turned on). There
are 26 pins exposed externally—pins 0-28 excluding 23 to 25. They can
each be referenced by a bit in a 32-bit register. Access that bit by
placing a one in a register and shifting it left by the pin number.

To initialize the SIO pin:

1.
Write one to the pin’s position in the output enable set register to

configure it for output.

2.
Write the same value to the output clear register to turn the pin off.

Listing 9-4 shows this process.

#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"

MOV R3, #1

LSL R3, RO @ shift over to
pin position
LDR R2, gpiobase @ address we want

STR  R3, [R2, #SIO GPIO OE SET OFFSET]
STR  R3, [R2, #SIO GPIO OUT CLR OFFSET]

gpiobase: .WORD SIO BASE @ base of the GPIO
registers

Listing 9-4 How to configure the SIO pin to a known state

How to Turn a Pin On/Off

To turn on a pin is the same process as before, except now write it to
the SIO set register to turn on the current to drive the LED as shown in



Listing 9-5.

MOV R3, #1

LSL R3, RO @ shift over to pin
position
LDR R2, gpiobase @ address we want

STR  R3, [R2, #SIO GPIO OUT SET OFFSET]

Listing 9-5 Code to turn on a LED by turning on the SIO output register

Similarly, turn the LED off by doing the same thing to the SIO clear
register.

Note It takes only one instruction to access the SI0, adding
efficiency, simplifying programming, and eliminating concurrency
problems.

The Complete Program

Putting all the program together is shown in Listing 9-6. This program
uses the good programming practice of employing constants in the C
header files. The program demonstrates using hardware registers. It
doesn’t use the SDK to access the SIO pins; instead, it only uses the SDK
for the sleep_ms function.

@

@ Assembler program to flash three LEDs connected
to the

@ Raspberry Pi GPIO writing to the registers
directly.

@

@

#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"
#include "hardware/regs/io bank0O.h"
#include "hardware/regs/pads bank0O.h"



.EQU LED PIN1, 18
.EQU LED PINZ, 19
.EQU LED PIN3, 20

.EQU FUNCSEL VALUE SIO, 5
.EQU sleep time, 200

.thumb func
.global main @ Provide
program starting address

.align 4 @ necessary
alignment
main:

@ Init each of the three pins and set them to
output
MOV RO, #LED_PINI

BL gpioinit
MOV RO, #LED PINZ2
BL gpioinit
MOV RO, #LED_PIN3
BL gpioinit

loop:
@ Turn each pin on, sleep and then turn the pin
off

MOV~ RO, #LED PINI

BL gpio_on

LDR RO, =sleep time
BL sleep ms

MOV RO, #LED PIN1
BL gpio off

MOV RO, #LED PINZ2
BL gpio_on

LDR RO, =sleep time
BL sleep ms



MOV RO, #LED PINZ2

BL gpio off

MOV RO, #LED PIN3

BL gpio_on

LDR RO, =sleep time

BL sleep ms

MOV~ RO, #LED PIN3

BL gpio off

B loop @ loop

forever

@ Initialize the GPIO to SIO. r0 = pin to init.
gpioinit:

@ Initialize the GPIO
MOV R3, #1

LSL R3, RO @ shift
over to pin position
LDR R2, gpiobase @ address

we want
STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]
STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

@ Enable input and output for the pin
LDR R2, padsbank0

LSL R3, RO, #2 @ pin * 4
for register address
ADD R2, R3 @ Actual

set of registers for pin
MOV ~ R1, #PADS BANKO GPIOO IE BITS
LDR R4, setoffset
ORR R2, R4
STR R1, [R2, #PADS BANKO GPIOO OFFSET]

@ Set the function number to SIO.
MOV R4, RO



LSL R4, #3 @ each GPIO
has 8 bytes of registers

LDR R2, iobank0 @ address
we want

ADD R2, R4 @ add the
offset for the pin number

MOV~ R1, #FUNCSEL VALUE SIO

STR R1, [R2,
#I0 BANKO GPIOO CTRL OFFSET]
#if HAS PADS BANKO ISOLATION
@ Remove pad isolation now that the correct
peripheral 1is set

LDR R2, padsbank0

LSL R3, RO, #2 @ pin * 4
for register address
ADD R2, R3 @ Actual

set of registers for pin

LDR R4, clearoffset

ADD R2, R4

LDR R1, PBGIB

STR R1, [R2, #PADS BANKO GPIOO OFFSET]
#endif

BX LR

@ Turn on a GPIO pin.

gpio on:

MOV  R3, #1

LSL  R3, RO @ shift
over to piln position

LDR R2, gpiobase @ address
we want

STR  R3, [R2, #SIO GPIO OUT SET OFFSET]
BX LR

@ Turn off a GPIO pin.
gpio off:
MOV R3, #1



LSL R3, RO @ shift
over to pin position

LDR R2, gpiobase @
address we want

STR  R3, [R2, #SIO GPIO OUT CLR OFFSET]

BX LR
.align 4 @

necessary alignment
gpiobase: .word SIO BASE @ base
of the GPIO registers
iobankO: .word IO BANKO BASE @ base
of 10 config registers
padsbankO: .word PADS BANKO BASE
setoffset: .word REG ALIAS SET BITS

clearoffset:.word REG ALTIAS CLR BITS
padenaboff: .word PADS BANKO GPIOO OFFSET
PBGIB: .word  PADS BANKO GPIOO ISO BITS

Listing 9-6 The complete program to flash the LEDs writing to the hardware directly

The SDK gpio_init function defaults setting the SIO pin for input, so
gpio_set_dir needed to be called to set the pin for output. In this
example, the included gpioinit function sets the pin for output so the
extra function isn’t required.

Summary

This chapter studied how the memory in the Pico-series is organized,
where ROM, RAM, and the hardware registers are located. How to use
the C header files in the SDK to get symbolic references for the
hardware registers and their values was learned. How the internal
hardware devices are connected to external pads that we soldered pins
to was studied. The APB was programmed to connect pins and make
the SIO pins used active. The SIO registers were used to turn the LEDs
on and off. The chapter concluded with an Assembly Language version
of Chapter 8’s program that writes to the hardware directly rather than
using the SDK functions.



This method of accessing the hardware is called “bit banging,”

where one CPU bangs the bits in the hardware registers to do what is
wanted. This method is expensive on the ARM Cortex-M-series
processor. In Chapter 10, how to offload this work to the Pico-series’
/0 coprocessors is studied.

Exercises

1.

What is the starting memory address for the hardware registers for
[2C number 0 1/0 device? Which header file is looked in for useful
defines when working with this device?

Why does the Raspberry Pi Pico-series have multiple functions on
each external pin? Why doesn’t the Pico-series just have more pins
so they can all be used at once?

Try changing the program to flash the LEDs in a different pattern.
Can a fourth and fifth LED be added?

To make sure how the program loads the hardware addresses is
understood, single step through the program to examine how
addresses are loaded step by step. Look at the disassembly file to
see what the code is assembled into.

How would the program be structured to do other work, rather
than calling sleep_ms()?
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This chapter puts aside the Assembly Language instructions for the
ARM Cortex-M-series processor that have been studied and looks at a
new Assembly Language syntax quite different from ARM’s. The
RP2040 contains eight programmable 1/0 (PIO) processors that are
programmed as state machines with their own Assembly Language
instructions, whereas the RP2350 has twelve of these. There’s a tool in
the SDK, pioasm, which assembles these in a similar manner to the GNU
Assembler.

The RP2040 and RP2350 contain several specialized [/0 hardware
components for handling various common hardware protocols like the
UART and USB. However, with DIY projects non-standard devices are
often encountered that require custom control of the GPIO pins.
Sometimes it’s possible to implement these protocols using the ARM
CPU in a manner as in Chapter 9, but the ARM CPU wasn’t designed for
this, and it takes all the ARM’s processing power if it’s even possible.

Raspberry’s solution to this are the P10 processors that offload the
processing from the CPU and hopefully provide enough programming
power to accomplish most common jobs. Controlling I/0 isn’t an easy
job, but it isn’t necessary to design custom hardware or add a second
RP2040 board to perform the 1/0.

The good news is that there are only nine Assembly Language
instructions, and there are only thirty-two instruction memory slots
shared by four PIO processors. Each instruction executes in one clock
cycle and sets or reads a set of GPIO pins, meaning we can manage
protocols that operate up to 150MHz for the RP2350. This excludes
HDMI but encompasses most other things including VGA. The trick is
how to implement protocols in small compact programs that don'’t stall
waiting for some external event.

Note The RP2350 is slightly faster than the RP2040 running at
150MHz rather than 120MHz. As a result, the sample programs flash
the LEDs a bit faster on an RP2350 than on an RP204.0, and the
sample calculations in this chapter are based on the RP2040, but can
easily be adapted to the RP2350.




Before diving into an example, the architecture of the PIO system is
looked at first.

About the PIO Architecture

The PIO coprocessors are divided into banks of four—the RP2040 has
two banks and the RP2350 has three banks. Each bank of four shares
the same 32-instruction memory for program storage. Figure 10-1 is a
block diagram of one of the PIO coprocessors.

| T Fifo |—-I- Out Shift [ Scratch X |

System /O Mapping GPIO Pins

«——| RxFifo |<gIn Shift [ Scratch Y

PC [ Clock Divider

Control Logic

|

Instruction Memory
32 Instructions

Figure 10-1 Block diagram of one PIO processor

Within each PIO there are

* Two general-purpose 32-bit scratch registers

e Two shift registers to assist in shifting bits into and out of the
processor

e A four-word transmit FIFO (First-In-First-Out) to buffer data coming
from the ARM CPU

e A four-word receive FIFO to buffer data being sent to the ARM CPU

e A program counter that controls which instruction is being executed

e A clock divider register that slows down PIO processing

e The I/O mapping that maps the PIO’s output to physical GPIO pins



e The control logic that executes the instructions

Each instruction is 16 bits in length and comprised of three parts:

The operand is like the operands used from the ARM world.

A side-set value set to the configured side-set pins. This means
every instruction can change the GPIO pins for fastest processing.

A delay value that slows an instruction up to 31 clock cycles to help
program precise timing to match hardware protocol requirements.

Note Besides the delay value, the overall program can be slowed
by setting the clock divider register.

Next, the nine individual instructions are looked at.

About the PIO Instructions

This section looks at the nine instructions and their operands. All these
instructions can have a side-set or delay value included, but for
simplicity these are looked at in the following sections:

1.
JMP condition address

WAIT polarity source index
IN source, bitcount

OUT destination, bitcount
PUSH if-full block

PULL if-empty block

MOV destination, operation source



8. IRQ set/wait irq_num _rel

9.
SET destination, value

Four of the instructions—IN, OUT, PUSH, and PULL—are concerned
with transferring data to and from the ARM CPU. There aren’t any
memory operations, and the arithmetic operations are limited. The JMP
instruction can decrement a counter, and the MOV instruction can
reverse the bits or perform a one’s complement as part of the move.

Before going into detail on these instructions, an example follows to
give a feel for how these instructions are used.

Flashing the LEDs with PIO

The previous programs flashed three LEDs with the SDK and then
wrote directly to the Pico-series’ hardware registers, but now the PIO
coprocessor is used. The advantage of this method is that all the
processing happens on three PIOs and the ARM processor is left free to
do other work. First, the PIO Assembly Language code is putin a file
called blink.pio containing Listing 10-1.

; Program to blink a LED

.
4

.program blink

pull block

out y, 32
.wrap target

mov X, y

set pins, 1 ; Turn LED on
lpl:

Jmp x-- 1pl ; Delay for (x+1) cycles, x 1is a
32 bit number

mov X, VY

set pins, O ; Turn LED off
1lp2:



Jmp x-- 1p2 ; Delay for the same number of
cycles again
mov x, y

1p3: ; Do it twice to wait for 2
other leds to blink

Jmp x-- 1p3 ; Delay for the same number of
cycles again
.wrap ; Blink forever!
% c-sdk {

// this is a raw helper function for use by the
user which sets

// up the GPIO output, and configures the SM to
output on a

// particular pin

void blink program init (PIO pilo, uint sm, uint
offset, uint pin) {

pio gpio init(pio, pin);

pio sm set consecutive pindirs(pio, sm, pin, 1,
true);

pio _sm config c =
blink program get default config(offset);

sm config set set pins(&c, pin, 1);

pio sm init(pio, sm, offset, &c);

o° —~

}
Listing 10-1 P10 Assembly Language code to blink a LED

Here are a few notes about this file:

e Comments start with a semicolon; anything after a semicolon is
ignored. C-style comments /* */ and // can also be used.

e The program starts with a .program directive that gives the program
a name. This will be used in C variable names, so it must follow the
rules for a C variable.

e The PC wraps back to 0 once it passes 31 giving it an infinite loop for
free. However, there are control registers that can alter this



wraparound, namely, setting the end instruction and where to loop
to. The .wrap and .wrap_target directives define this setting to give
an infinite loop, saving the use of an extra JMP instruction.

Labels are like those in ARM Assembly Language, a name followed by
a colon. These are used as the targets for JMP instructions.

This file will be assembled into a C header (.h) file containing the
machine code 16-bit instructions in an array. As a consequence, C
code can be included in this file, where anything between % c-sdk {
and %} is put in the resulting header file along with a couple of other
generated helper functions.

The program inputs a 32-bit delay loop counter from the ARM

world and keeps that in the Y scratch register, and whenever it needs to
wait, it moves this to the X scratch register and then loops that many
times. The program turns on the LED, does the delay loop, and then
turns the LED off. It then performs the delay loop twice to let the other
two LEDs have their turn. Which pin the program controls is configured
from the ARM side. Here’s a quick overview of what each instruction
does:

1.

pull block: Pulls a 32-bit quantity from the host Tx FIFO into the
output shift register (OSR). The block operand says to wait for a
quantity.

outy, 32: Shifts 32 bits from the OSR into the Y scratch register.

mov x, y: Copies the contents of the Y scratch register to the X
scratch register.

set pins, 1: Sets the pins configured for this PIO to 1. The pin to use
is configured by the C program.

jmp x-- Ip1: Jumps to Ip1 if X is nonzero while decrementing the X
scratch register. The condition is based on the initial value of X.

set pins, 0: Turns off the pins configured for this PIO.



Although the PIOs do all the work, a C (or ARM Assembly Language)
program must download the code to the PIOs, configure them, and send
the loop count in. This is done by the program blink.c containing
Listing 10-2.

/**

* C Program to set the PIO in motion blinking the
LEDs

*/

#include <stdio.h>

#include "pico/stdlib.h"
#include "hardware/pio.h"
#include "hardware/clocks.h"
#include "blink.pio.h"

const uint LED PIN1 = 18;
const uilnt LED_PINZ = 19;
const uint LED PIN3 = 20;

fdefine SLEEP TIME 200

voild blink pin forever (PIO pio, uint sm, uint
offset, uint pin, uint freq);

int main() {
int 1 = 0;

setup default uart();

PIO pio = pio0;
uint offset = pio add program(pio,
&blink program) ;
printf ("Loaded program at %d\n", offset);

blink pin forever (pio, 0, offset, LED PINI,
5);



sleep ms (SLEEP TIME) ;
blink pin forever (pio, 1, offset, LED PIN2,

2);
sleep ms (SLEEP TIME) ;
blink pin forever (pio, 2, offset, LED PIN3,
5);
while (1)
{
i++;
printf ("Busy counting away i = %d\n", 1i);

}

vold blink pin forever (PIO pio, uint sm, uint
offset,
uint pin, uint freq) {
blink program init (pio, sm, offset, pin);
pio sm set enabled(pio, sm, true);

printf ("Blinking pin %d at %d Hz\n", pin,
freq);

pio->txf[sm] = clock get hz(clk sys) / freqg;
}

Listing 10-2 The C code to call the SDK to download and configure the P10s

The C program uses three PIO processors in PIO bank 0. It
downloads the program using the pio_add_program SDK function. The
program is contained in blink_pio.h as a 16-bit unsigned integer array
containing comments showing how each instruction was assembled:

static const uintl6 t blink program instructions/[]
= A
0x80a0, // 0: pull block
0x6040, // 1: out v, 32
// .wrap target
0xa022, // 2: mov X,y
Oxe001, // 3: set pins, 1



0x0044, // 4: jmp x--, 4

0xa022, // 5: mov X, VY

0xe000, // 6: set pins, O

0x0047, // 7: jmp x==, 7

0xa022, // 8: mov X, V

0x0049, // 9: jmp x-=, 9
// .wrap

b

Next, the program starts each PIO, sleeping 200ms between so that
each one blinks at the correct time. Once the PIOs are set in motion, the
C program that runs on the ARM CPU goes into an infinite loop printing
a count. This demonstrates that the ARM CPUs are both completely free
to do other work, while the three PIO processors flash the LEDs.

To assemble the PIO code, add a line to the CMakeLists.txt file as
shown in Listing 10-3 where a pico_generate_pio_header statement is
added.

cmake minimum required (VERSION 3.13)

include (pico_sdk import.cmake)
project (test project C CXX ASM)

set (CMAKE C STANDARD 11)
set (CMAKE CXX_ STANDARD 17)

pico sdk init ()
add executable (pio blink)

# by default the header is generated into the
build dir

pico generate pio header (pio blink

${CMAKE CURRENT LIST DIR}/blink.pio)

target sources (pio blink PRIVATE blink.c)



target link libraries(pio blink PRIVATE
pico stdlib hardware pio)
pico add extra outputs(pio blink)

Listing 10-3 CMakeLists.txt file with the pico_generate_pio_header statement

The C code that calls SDK functions to control the PIOs is standard
and taken from the various PIO samples included in the SDK. Next, the
individual PIO instructions are looked at in more detail.

PIO Instruction Details and Examples

Each instruction is simple, but they have many variations. In this
section, examples of each instruction are given in its various forms.

JMP

The PIO doesn’t have a program status register, so the conditions are
based on various operations in the PIO. Here are all the incarnations of
the JMP instruction:

JMP label ; unconditional branch

JMP 'X label ; Jump 1f X is non zero

JMP X—label ; Jump if X 1s nonzero while
decrementing X

JMP 'Y label ; Jump if Y 1s non zero

JMP Y—label ; Jump 1f Y 1s non zero while
decrementing Y

JMP X!=Y label ; Jump if X is not equal to Y
JMP pin label ; Jump if pin is 1

JMP 'OSRE label ; Jump if the OSR has less
bits

; than the configured
threshold

Note The pin and !OSRE versions of jump require configuration
from SDK function sm_config_set_jmp_pin or
sm_config_set_out_shift.




WAIT

Wait can wait for a source to be 0 or 1 based on its first polarity
instruction. Here are examples with each source:

WAIT 0 gpio 17 ; wait for GPIO 17 to be 0
(actual GPIO pin)

WAIT 1 pin 1 ; wait for pin 1 to be 1
(mapped pins)

WAIT 1 irg 1 ; walt for IRQ 1 to be set

(then clears 1it)

WAIT 0O 1irg 2 rel ; wait for IRQ 2 to clear,
; IRQO is relative to other

PIOs.

Interrupts are discussed in Chapter 11. The other two forms allow
waiting on a physical GPI0 with the gpio version or wait on a
configured pin with the pin version.

IN

When performing [/0O, usually bits are received one by one. The
purpose of the input shift register (ISR) is to accumulate these bits one
by one, and when there’s a byte or word, those are sent to the ARM CPU.
The IN instruction moves bits from one of various sources into the ISR.
Here are all the forms of the IN instruction:

IN PINS, 1 ; Move 1 bit from the configured
pins to the ISR

IN X, 32 ; Copy the entire X register to
the ISR

IN Y, 16 ; Copy 16 bits from the Y register
to the ISR

IN NULL, 4 ; Copy 4 zero bits into the ISR

IN ISR, 4 ; Can be used to rotate 4 bits in
the ISR

IN OSR, 8 ; Copy 8 bits from the OSR to the

ISR



ouT

Out transfers bits from the output shift register into various
destinations inside the PIO. This data is received from the ARM CPU and
has already been moved from the transmit FIFO into the OSR. Here are
the forms of the OUT instruction:

ouT PINS, 1 ; set the pins from one bit in
the OSR
ouT X, 32 ; move 32 bits from the OSR to
the X register
ouT Y, 8 ; move one byte from the OSR
to
; the Y register
ouT NULL, 16 ; delete 16 bits from the OSR
OUT PINDIRS, 1 ; sets the pin direction for
the mapped pins
ouT PC, 5 ; Jump to the alocation in the
; next 5 bits of the OSR
OUT ISR, 16 ; move 16 bits to the ISR
ouT EXEC, 16 ; execute the next 16 bits as

an instruction

OUT is the reverse of IN, except that it controls the direction of the
pins in a couple of interesting ways, including the host controlling the
PIO by copying data to the PC to perform a jump or using EXEC to
execute single instructions.

PUSH

PUSH pushes the contents of the ISR into the Rx FIFO as a single 32-bit
quantity and then sets the ISR to 0. PUSH blocks if the RXFIFO is full, or
if noblock is set, then PUSH continues to the next instruction without
doing anything. The ifful parameter tells PUSH not to do anything,
unless the ISR has reached a certain threshold of bits received.

PUSH block ; Push the ISR to the Rx
FIFO waiting



; for space to be

available
PUSH noblock ; Push the ISR to the Rx
FIFO if

; space available else
no-op
PUSH iffull block ; Push ISR to Rx FIFO if

enough bits

; received and space
available
PUSH iffull noblock ; Push ISR to Rx FIFO if
enough bits

; received and space
available, else no-op

Note There is an autopush configuration that pushes
automatically without requiring this instruction.

PULL

Pulls a 32-bit quantity from the Tx FIFO into the OSR. There are two
parameters used to determine whether to block if the Tx FIFO is empty
and what to do if the OSR isn’t empty enough as prescribed by a
configurable parameter. The non-blocking pull moves the X scratch
register into the OSR as a default value.

PULL block ; Pull 32-bits from the
Tx FIFO to the

; OSR blocking to wait
for data
PULL noblock ; Pull from Tx FIFO if
there is data

; else copy X into the
OSR
PULL ifempty block ; Blocking pull, but
only 1f OSR

; 1s sufficiently empty



PULL ifempty noblock ; Nonblocking pull, but
only if
; OSR 1s empty

Note There is an autopull configuration that’s often used to do this
automatically, saving an instruction.

MOV

Moves data from the source to the destination, with an option to either
reverse the bits or perform a one’s complement. The sources are

e PINS

e X

e Y

e NULL
e STATUS
e ISR

e OSR

The destinations are

e PINS
e X

e Y

e EXEC
e PC

e ISR
e OSR

Use ! or ~ for one’s complement and :: to reverse the bits. Some
examples are

MOV X, ~Y ; Move the one’s complement of
Y to X

MOV X, :Y ; Move Y to X, reversing all
the bits

MOV X, STATUS ; Move the configured status to

X



MOV EXEC, X ; Execute the contents of X as
an instruction

MOV PC, Y ; Jump to the instruction
specified by Y

The STATUS value can be configured to serve a few purposes, like
indicating whether a FIFO is full or empty.

IRQ
IRQ sets or clears an interrupt either to the ARM CPU or to another PIO.

e Interrupts 0-3 are routed to the ARM CPU.
e Interrupts 4-7 are routed to the appropriate PIO in the same bank.

Chapter 11 talks about interrupts, but for now here are some
examples:

IRQ SET 2 ; set interrupt 2,
; won't wait for interrupt to
be handled
IRQ CLEAR 2 ; clear interrupt 2
IRQ WAIT 2 ; set interrupt 2 and

; walt for interrupt handler to
clear it
IRQ SET 2 REL ; lnterrupt number will be
adjusted

; by adding PIO number

SET

Sets an immediate value to a destination. The immediate value is
limited to 5 bits. The destinations are PINS, X, Y, and PINDIRS.

SET PINS, 1 ; Turn on the pins for this
PIO
SET PINDIRS, O ; Turn the pins into input
pins

SET X, 31 ; Set X to the wvalue 31



About Controlling Timing

The program to flash the LEDs generated three square waves, one for
each LED, with the one part offset differently for each LED. Most
computer communications use square waves to represent binary data,
the difference being that they operate at higher speeds than this
flashing LEDs program. The hard part of implementing these protocols
usually comes down to meeting the precise timing requirements in the
electronics specs. The PIO processor has several features that help
provide precise timing for communications protocols. First, how to
control the speed the program executes at is looked at.

About the Clock Divider

By default, each PIO instruction executes in one system clock cycle,
unless it must wait on an external event. The system clock runs at
125MHz or 150MHz, and the PIO will execute each instruction at this
speed. For most protocols this is too fast, and techniques to slow down
are required like delaying loops. The PIO has a configuration to slow
down how fast it operates via a clock divider. Based on a couple of
registers, a number is divided into the system clock, and the P10 will
operate at that speed. The valid values for the clock divider run from 1
to 65,536 in increments of 1/256. The easiest way to configure this is
via the Pico-series SDK function

static inline void sm _config set clkdiv (
pio sm config *c, float div);

where the clock divider passes as a floating-point number and the
SDK splits it apart to set the integer and fractional clock divider
hardware registers correctly.

To use the clock divider in the flashing LED program, the clock
divider must be configured in the blink_program_init function from
blink.pio as shown in Listing 10-4.

void blink program init (PIO pio, uint sm, uint
offset,
uint pin, float clkdiv) {



pio gpio init(pio, pin);

pio sm set consecutive pindirs(pio, sm, pin, 1,
true) ;

pio _sm config c =
blink program get default config(offset);

sm config set clkdiv(&c, clkdiv);

sm config set set pins(&c, pin, 1);

pio sm init(pio, sm, offset, &c);

Listing 10-4 The blink_program_init function setting the clock divider

Then it’s called with

blink program init (pio, sm, offset, pin,
65536.0f) ;

Next, adjust the delay loops with

pio->txf[sm] = clock get hz(clk sys) / freq /
©65536;

Since the desired frequency is 5Hz, the delaying loop is reduced
from 125,000,000/5 = 25,000,000 to 125,000,000/5/65,536 = 381.

The clock divider affects the speed of everything running on the
PIO; however, there is fine control of how long each individual
instruction executes.

About the Delay Operand

Each PIO instruction has 5 bits set aside for delay and side-setting.
Side-set will be discussed shortly. In the meantime, all 5 bits are used
for delay. The delay is specified in square brackets after the instruction
and with 5 bits has values of 0-31, for example:

MOV X, Y [31]

The MOV instruction is executed in one cycle and then waits 31
cycles before proceeding, making the instruction take 32 cycles in total.



When this is incorporated into the flashing LEDs program, the delay
loops are eliminated entirely, as long as the LEDs flash at 10Hz rather
than 5Hz. This is easily discernible to us poor slow humans. This is
combined with using the clock divider. The PIO Assembly Language
code is shown in Listing 10-5.

.program blink
.wrap target
set pins,
mov X, X
mov X, X
mov X, X
mov X, X
mov X, X
set pins,
mov X, X
mov X, X
mov X, X
mov X, X
mov X, X
set pins,
mov X, X
mov xX, X
mov X, X
mov X, X
mov X, X
.wrap ; Blink forever!

W
=

; Turn LED on
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; Turn LED off
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; Turn LED off
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Listing 10-5 PIO code to flash the LEDs without a delay loop

Note We could also use the NOP instruction alias:

NOP [31]

This is an assembler alias to MOV X,X for readability.
Each section has six instructions

e One to set the pin



e Five no-operations

touse up 6 x 32 = 192 clock cycles.
This is a waste of the small 32-instruction PIO memory, but it
demonstrates a timing control technique. Change the SLEEP_TIME as

#define SLEEP TIME 100

Adjust the clock divider to

blink program init (pio, sm, offset, pin,
65104.17f);

See Exercise 1 for why this value needs to be changed. Slowing the
RP2040/RP2350 PIOs to something human readable is only barely
possible; however, at computer-to-computer speeds, the techniques in
this section are extremely powerful. Next, how to control the pins
without using SET instructions is examined.

About Side-Set

Side-set lets each instruction set up to five pins while executing. This is
useful for controlling separate control pins or attaining maximum
speed by eliminating SET instructions. Side-set uses the same bits as
delay, so configuring bits for side-set reduces the number of bits
available for delay reducing the maximum delay time. By default, when
side-set is configured, every instruction in the program will do a side-
set, but the PIO can be configured to make side-set optional. The
downside is that this uses 1 bit of the 5 bits available to specify side-set
or delay. Listing 10-6 contains the PIO Assembly Language to use side-
set.

.program blink

.side set 1

.wrap target
mov X, X side 1 [15] ; Turn LED on
nop side 1 [15]
mov x, X side 1 [15]



mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

.wrap

XX X X X X X X X X X X X X X

side
side
side
side
side
side
side
side
side
side
side
side
side
side
side

c OO OO OO oo ook, FEF

14

HF R R RPRRPRRPRRPRRRPRRPR PR
G RGNG NGNS NG NG NN N IS e

[15]

; Turn LED off

; Turn LED off

Blink forever!

Listing 10-6 PIO program to flash the LEDs using side-set

This program flashes twice as fast, since one of the delay bits is used
for side-set; therefore, the delays are reduced from 31 to 15. The
program is a collection of NOP instructions, where all the work is done

by side-set, delay, and configuration.

The .side_set assembler directive tells the assembler how many
side-set bits to configure and whether they are optional or not. This is
necessary for the assembler to provide meaningful error messages and
generate code correctly.

In the blink_program_init routine, change the

sm_config_set_set_pins function to

sm config set sideset pins(&c, pin);

Since it’s running twice as fast, change the definition of
SLEEP_TIME to 50.

Programming the PIOs is a combination of code and configuration.
We conclude with remaining configuration options.



More Configurable Options

This is a quick list of configuration options to be aware of, all of which
can be set via RP2040 SDK functions:

1.

Many PIO data functions only send or receive data; hence, they only
use one of the RX or TX FIFOs. By default, each FIFO is four words,
but they can be configured to one FIFO of eight words, making the
other 0.

PUSH and PULL instructions can often be eliminated by
configuring autopush or autopull. These options will cause the
PUSH and/or PULL to happen when a configured data threshold is
reached.

Each PIO learned so far only writes to one GPIO pin. However, it has
a 32-bit output register for writing to the pins, so all the pins are
written to at once. This is why the various instructions that read or
write the pins can process more than one bit.

Interpreting data as an instruction has not yet been presented, but
the MOV EXEC and OUT EXEC functions can do this, allowing
interesting ARM-to-PIO communication techniques and
circumventing the 32-instruction limit.

There are many PIO examples in the pico-examples github. The
best way to create a new PIO program is to find something similar
in the examples and then modify it for the differences.

Summary

This was a whirlwind introduction to programming the PIO
coprocessors contained in the Pico-series. These are powerful
processors for offloading communications functions from the two ARM
CPU cores. PIO functionality was introduced and viewed in an example
program to flash the LEDs. Next, all the instructions were looked at in
detail, and then program timing was studied by modifying the flashing



LEDs program to use all the various techniques. Then side-set was
looked at to control GPIO pins, and other useful configuration items
were reviewed.

Chapter 11 looks at how to catch interrupts from internal and
external devices and how to set interrupts from software.

Exercises

1.
The system clock for an RP2040 is 125,000,000Hz. Each group of
instructions executes in 6 * 32 = 192 clock cycles. Calculate the

system clock divider to get a flash rate of 10Hz or ten times per
second. How does that change for a 150MHz RP23507?

Using side-set, how fast can a square wave’s frequency cycle?

Write a PIO program to change the pin direction as directed by the
ARM CPU. This would be like the program in Chapter 9. The ARM
still does a lot of work, but this is good practice at sending data or
instructions from the ARM to a PIO.

In the first example program in this chapter, remove the SET
instruction by placing side-set on the JMP instructions.

The gdb debugger doesn’t know about the PIO processors, and
there isn’t a printf statement for the PIOs. What are some possible
techniques to debug a PIO program? Think about sending values to
the ARM CPU for printing.
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11. How to Set and Catch Interrupts
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Overview of the Pico-series Interrupts
About the RP2040 versus the RP2350
About the Pico-series’ Interrupts
About the Interrupt Vector Table
About Saving Processor State

About Interrupt Priorities

Flashing LEDs with Timer Interrupts
About the RP2040 Alarm Timer
Setting the Interrupt Handler and Enabling IRQ0
The Complete Program

About the SVCall Interrupt

Using the SDK

Summary

Exercises

All the various iterations of the flashing LEDs program had one thing in
common; they were one large loop using different methods to control
the timing of the flashing. If this was part of a larger program that did
other tasks, such as driving a robot, then putting in hooks everywhere
to check if the LEDs need processing is annoying and can easily lead to
bugs.

Another approach is to set a timer interrupt; here, a timer is
programmed, so when it goes off it interrupts the program to process
the LEDs. This way a loop isn’t needed, nor is the handling of the LEDs
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integrated into other parts of a larger program. This chapter looks at
interrupts on the Pico-series, how they work, and how to put them to
use.

In general, when handling [/0, data is often received randomly, and
just a notification is needed when it is there to process. Interrupts
provide a great way to do this. The ARM Cortex-M-series has powerful
interrupt support that is well worth looking at. Before getting into the
details, here is an overview of the Pico-series’ interrupt mechanisms.

Overview of the Pico-series Interrupts

The ARM Cortex-M0+ powering the RP2040 supports 32 separate
interrupt sources of which 26 are implemented, leaving 6 unused. The
ARM Cortex-M33 powering the RP2350 supports 52 interrupts of
which 46 are connected. Each of these interrupt sources wires an
interrupt source, whether an internal or external device, to the Nested
Vector Interrupt Controller (NVIC). The NVIC knows the priority of
each interrupt and decides if it needs to interrupt the CPU. When it
interrupts the CPU, it saves the state of the running program and jumps
to an interrupt handler defined in the Interrupt Vector Table (IVT)
located within memory. When the interrupt handler finishes processing
the interrupt, it returns, and the CPU restores the state of the running
program letting it continue executing. Figure 11-1 diagrams this
process.



Interrupt triggered
Perhaps by character
Received on serial port

i

NVIC
CPU
Running program State saved VT
Mov r1, 12 | Pointer to handler
Interrupt happens
Mov 3, r4 i

Interrupt handler
Code to handle interrupt
BXLR

State restored

Figure 11-1 Overview of the interrupt calling process

With this overview in mind, the following sections dig into the
various components in more detail starting with the list of interrupts.

About the RP2040 versus the RP2350

The RP2350 is based on the ARM Cortex-M33, whereas the RP2040 is
based on the older ARM Cortex-M0+. The M33 supports more
interrupts than the M0+, and consequently the RP2350 utilizes more
interrupts and external devices. This section lists the values for the
M33, but the final full program contains conditional compiles to work
with either an RP2040 or RP2350. In the SDK if the board is a Pico 2,
then the header file m33.h must be used, whereas if the board is a Pico
1, then mOplus.h must be included. Some of the defines in these files
contain M33 or MOPLUS and must be conditionally compiled if both
boards are supported.



Further, because the M33 now supports more than 32 interrupts,
additional banks of hardware registers are required to control them;
therefore, the constants contain 0 or 1 depending upon which bank
needs to be used.

About the Pico-series’ Interrupts

There are two sources of interrupts, those generated from within the
CPU and those generated by devices external to the ARM CPU. Table 11-
1 lists the ARM CPU internal interrupts.

Table 11-1 The ARM’s internal interrupts

Number [IRQ | Priority | Source Comment

1 -15(-3 Reset Triggered at power on or reset

2 -14 (-2 NMI Non-maskable interrupt

3 -13 (-1 Hard fault | Triggered by non-recoverable hardware failures
4 -12 (0 MemManage | Memory manager fault

5 -11 (0 BusFault Memory errors on the bus

6 -10 (0 UsageFault | Usage error like undefined instruction
11 -5 1|0 SVCall Triggered by the SVC instruction

12 -4 |0 DebugMon |Debugger triggered

14 -2 |0 PendSV Triggered by the SVCall handler

15 -1 |0 Systick ARM system 24-bit clock tick

External interrupts are wired up to the CPU starting at IRQO but
starting at exception 16. Both the IRQ number and exception number
are used in various situations. In Table 11-1, the IRQs are negative, to
show their relative place to the external interrupts. Exceptions 7-10
and 13 are unused and reserved for future use. This table is for the
RP2350; some of these are not present in the RP2040. The NMI
interrupt is called when there is a fault in an interrupt handler routine,
which is considered more serious than a fault happening in regular
code. Table 11-2 lists some of the interrupts wired up to the ARM CPU
inside the RP2350 SoC.

Table 11-2 A selection of the RP2350’s interrupts and their priority



Number [IRQ |Priority |Source | Comment

16-19 |0-3 |2 Timer O [ Alarm 0

20-23 |4-7 |2 Timer 1 [Alarm 1

24-25 (8-9 |2 PWM |Interrupt when a slice is complete
26-29 |10-13(2 DMA Direct Memory Access

30 14 2 USB Data received

31-36 |15-20|2 PIO Programmable [/0

37-38 (21-22|2 GPIO  |One for each bank

39-40 |23-24|2 QSPI External flash memory

41-45 |25-29(2 SIO

46 30 2 Clocks

47-48 |[31-32|2 SPI Data received, data sent, buffer overrun
49-50 (33-34|2 UART |11 possible reasons

51 35 2 ADC FIFO reached threshold full
52-53 |36-37|2 12C Data received or sent

Next, how the Pico-series assigns an interrupt handler for each of
these is described.

About the Interrupt Vector Table

When the Pico-series powers up, the IVT is located at address
0x00000000; however, the SDK’s power-up routines move it to SRAM,
by setting a number of hardware registers associated with the ARM
Cortex-M-series interrupt configuration. This table is a list of memory
addresses, one for each interrupt. When an interrupt occurs, the ARM
processor jumps to the address stored for that interrupt.

The IVT contains an initial stack pointer (SP) to use after a reset
interrupt or on power-up and then the addresses of the handlers for
the ARM internal interrupts, followed by the handlers for the connected
devices.

Note Forthe ARM interrupts, the reserved interrupts still use a
table spot, even though they aren’t used.

Figure 11-2 shows the format of the IVT.



Exception IRQ

Number Number Vector Offset

Initial SP Ox00

1 -15 Reset Ox04

2 -14 NMI 0x08

14 -2 PendSV Ox38
15 -1 SysTick 0x3C
16 0 Timer0 Ox40
30 14 USB Ox78

Figure 11-2 Format of the Interrupt Vector Table

The easiest way to access the IVT is to read the hardware register
where it’s configured. PPB_BASE is defined for the memory address of
the start of the ARM Cortex-M-series’ hardware registers, and then
M33_VTOR_OFFSET defined in m33.h is the offset to the IVT.

The value of M33_VTOR_OFFSET is too large to fit in an immediate
operand, so it needs to be loaded from memory; then add these two
numbers together to get the address of the hardware register
containing the address of the IVT. The code snippet below shows this
and loads the address of the IVT into R1:

#include "hardware/regs/addressmap.h"
#include "hardware/regs/m33.h"

LDR R2, ppbbase
LDR R1, vtoroffset
ADD R2, RI1

LDR R1, [R2]

ppbbase: .word PPB BASE
vtoroffset: .word M33 VTOR OFFSET



Place the address of the interrupt handler into the correct offset
within this table. When the Pico-series jumps to an interrupt handler, it
must first save the state of the running program.

About Saving Processor State

The state information of the processor is stored to the stack in a stack
frame, whose contents are shown in Figure 11-3.

Program's SP

SP+0x1C CPSR

SP+0x18 PC

SP+0x14 LR

SP+0x10 R12

SP+0x0C R3

SP+0x08 R2

SP+0x04 R1

SP+0x00 RO SP for interrupt handler

Figure 11-3 Processor’s saved state while interrupt handler runs

In Chapter 7, the whole saving state was half in the called routine
and half in the calling function. In this case of interrupts, the processor
does the work for the calling routine. This stack frame is eight words in
length and does not store registers R4-R11, so if they’re needed save
and restore them in the handler routine. Since an interrupt can happen
between any two instructions, the CPSR must be saved since the
interrupt could happen between the instruction that sets the CPSR and
then the instruction that acts on the CPSR.

The overhead, or minimum time an interrupt handler can take, is
the time to save these eight words to the stack and then restore them.
The time depends upon whether they are cached or not. This sets a
hard limit on how fast the Pico-series processes external data via the
interrupt mechanism. Interrupts have a priority, and a higher-priority



interrupt interrupts a lower-priority interrupt handler's routine,
creating another stack frame.

About Interrupt Priorities

Each interrupt has a priority. All the externally connected interrupts
can have four possible priorities from 0, 1, 2, and 3. With interrupts the
lower the number, the higher their priority is, so 0 has a higher priority
than 3. By default, all these interrupts are set to 2, but can be changed
via one of the ARM hardware configuration registers.

The interrupts nest, where if a higher-priority interrupt occurs
while a lower-priority interrupt handler executes, then the processor
interrupts the handler, creates a new stack frame, executes the handler
for the higher-priority interrupt, removes its stack frame, and
continues executing the lower-priority handler.

The ARM Cortex-M-series implements optimizations to reduce the
creation of stack frames:

1.
If a higher-priority interrupt arrives while the CPU is creating the

stack frame, then the CPU finishes creating the stack frame and lets
the higher-priority interrupt use it, since the setup is the same for
both. The NVIC remembers the original interrupt and runs it when
the higher-priority interrupt finishes.

If a lower- or same-priority interrupt occurs while another
interrupt runs, the processor won'’t tear down and recreate a stack
frame; it passes control immediately to the next handler when the
current handler finishes. This optimization applies to case 1 as
well.

That completes the theoretical part of this chapter. Next, how this all
fits together in a real application is looked at.

Flashing LEDs with Timer Interrupts

There are many techniques to flash three LEDs. Now this is done using
the Pico-series’ built-in timer via an interrupt. In this example, one of
the Pico-series’ alarms is set to interrupt the program every 200ms to



switch to the next LED. The timer interrupt handler is implemented as a
state machine, which increments the state, turns on or off each LED
based on the state, and then programs the next timer interrupt. Listing
11-1 is the pseudo-code for the alarm interrupt handler.

Clear the interrupt
state = state + 1
switch (state)
Case 1:
Turn on led 1, turn off leds 2 & 3
Case 2:
Turn on LED 2, turn off LEDs 1 & 3
Case else:
Turn on LED 3, turn off LEDs 1 & 2
Set state = 0
Set the timer to go off in another 200ms

Listing 11-1 Pseudo-code for the alarm interrupt handler

The state variable is a global variable located in SRAM and
initialized to zero by the program. This example uses Assembly
Language routines to manipulate the SIO hardware registers directly.

The only SDK functions used are to print a count in the program's
main loop, showing how the main part of the program can be written
without worrying about the LEDs, which are entirely controlled by the
interrupt handler. Before presenting the entire program, a bit of detail
on the Pico-series’ alarm timer follows.

About the RP204.0 Alarm Timer

The alarm timer is a 64-bit number that is incremented every
microsecond. An alarm is programmed by setting a hardware register
with a 32-bit number, and when the lower-order 32 bits of the timer
match, an interrupt is fired. So, in the code, the timer’s count is read,
200,000 (200ms in microseconds) is added, and then the alarm is set.

The locations of the hardware registers are in timer.h, with the base
address in addressmap.h. Below is the code to do this with the
assumption RO contains 200,000:



#include "hardware/regs/addressmap.h"
#include "hardware/regs/timer.h"

LDR R2, timerbase

LDR R1, [RZ2, #TIMER_TIMELR_OFFSET]
ADD R1, RO @ RO = 200,000
STR R1, [R2, #TIMER_ALARMO_OFFSET]

timerbase: .word TIMER BASE

When a timer interrupt is received, the interrupt must be cleared to
acknowledge it was received, with

LDR R2, timerbase
MOV R1, #1 @ for alarm O
STR R1, [R2, #TIMER_INTR_OFFSET]

After the new timer value is set, it’s enabled with

LDR R2, timerbase
MOV R1, #1 @ for alarm O
STR R1, [R2, #TIMER INTE OFFSET]

Besides programming the timers, when the program is initialized, it
needs to set the interrupt handler and enable the timer IRQ with the
NVIC.

Setting the Interrupt Handler and Enabling IRQO

Previously, how to get the location of the IVT was learned, and in this
program the interrupt handler is configured into it. Assuming the
location of the IVT is in R2, then the interrupt handler is set with

.EQU alarm0 isr offset, 0x40

MOV R2, #alarmO isr offset @ slot for alarm
0

ADD R2, R1 @ add the offset
to the IVT



LDR RO, =alarm isr @ load address of
our handler

STR RO, [R2] @ save our
routine to the IVT

By default, most interrupts are disabled. After all why execute all
these interrupt handlers if no one is using them? At program startup
IRQO is enabled to the NVIC with

MOV RO, #1 @ alarm 0 is IRQO (bit 0)
LDR R2, ppbbase

LDR R1, clearint

ADD R1, R2

STR RO, [R1]

LDR R1, setint

ADD R1, R2

STR RO, [R1]

clearint: .word M33_NVIC_ICPRO_OFFSET
setint: .word M33 NVIC ISERO OFFSET

In this case, follow the SDK recommendation to clear the interrupt,
and then enable it.

The Complete Program

Listing 11-2 contains the complete source code for this program and
should be put in a file called timeint.S.

¢

@ Assembler program to flash three LEDs connected
to the

@ Raspberry Pico-series GPIO using timer
interrupts to

@ trigger the next LED to flash.

@

#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"



#include "hardware/regs/timer.h"
#include "hardware/regs/io bank0.h"
#include "hardware/regs/pads bank0.h"
#1f defined (PICO RP2040)

#include "hardware/regs/mOplus.h"
felse

#include "hardware/regs/m33.h"

#endif

.EQU LED PINI1, 18
.EQU LED PINZ, 19
.EQU LED PIN3, 20

.EQU FUNCSEL VALUE SIO, 5

.EQU alarmO isr offset, 0x40

.thumb func @
SDK uses BX to call us
.global main @

program starting address

.align 4 @
alignment
main:

BL stdio init all ¢

uart or usb

@ Init each of the three pins and set
output
MOV RO, #LED_PINl

BL gpioinit
MOV RO, #LED PINZ2
BL gpioinit

MOV RO, #LED_PIN3
BL gpioinit

Needed since

Provide

necessary

initialize

them to



BL set alarm0 isr @ set the
interrupt handler

LDR RO, alarmtime @ load the
time to sleep
BL set _alarm0 @ set the

first alarm

MOV R7, #0 @ counter
loop:

LDR RO, =printstr @ string to
print

MOV R1, RY7 @ counter

BL printf @ print
counter

MOV RO, #1 @ add 1

ADD R7, RO @ to counter

B loop @ loop forever

set alarmO:
@ Set's the next alarm on alarm O
@ RO is the length of the alarm

@ Enable timer 0 interrupt

LDR R2, timerbase

MOV R1, #1 @ for
alarm O

STR R1, [R2, #TIMER_INTE_OFFSET]

@ Set alarm
LDR R1, [R2, #TIMER_TIMELR_OFFSET]
ADD R1, RO
STR R1, [R2, #TIMER_ALARMO_OFFSET]

BX LR

.thumb func @
necessary for interrupt handlers



@ Alarm O interrupt handler and state machine.
alarm isr:

PUSH {LR} @ calls
other routines

@ Clear the interrupt

LDR R2, timerbase

MOV R1, #1 @ for
alarm O

STR R1, [RZ2, #TIMER_INTR_OFFSET]

@ Disable/enable LEDs based on state

LDR R2, =state @ load
address of state

LDR R3, [R2] @ load
value of state

MOV RO, #1

ADD R3, RO @
increment state

STR R3, [R2] @ save
state
stepl: MOV R1, #1 @ case
state ==

CMP R3, R1

BNE step?2 @ not ==
check next

MOV RO, #LED_PINl

BL gpio_ on
MOV~ RO, #LED PINZ
BL gpio off
MOV RO, #LED PIN3
BL gpio off
B finish
step2: MOV R1, #2 @ case

state ==

CMP  R3, R1

BNE step3 @ not ==
then case else



MOV RO, #LED_PINI

BL gpio off

MOV RO, #LED_PINZ

BL gpio on

MOV RO, #LED_PIN3

BL gpio off

B finish
step3: MOV RO, #LED PIN1 @ case
else

BL gpio off

MOV RO, #LED_PINZ

BL gpio off

MOV RO, #LED_PIN3

BL gpio_on

MOV R3, #0 @ set
state back to zero

LDR R2, =state @ load
address of state

STR R3, [R2] @ save
State ==
finish:LDR RO, alarmtime @ sleep
time

BL set alarm0 @ set next
alarm

POP {PC} @ return
from interrupt
set _alarm0 isr:

@ Set IRQ Handler to our routine

LDR R2, ppbbase

LDR R1, vtoroffset

ADD R2, R1

LDR R1, [R2]

MOV R2, #alarmO isr offset @ slot
for alarm O

ADD R2, RI1



LDR RO, =alarm isr
STR RO, [R2]

@ Enable alarm 0 IRQ (clear then set)

MOV RO, #1 @ alarm O
is IRQO

LDR R2, ppbbase

LDR R1, clearint

ADD R1, R2

STR RO, [R1]

LDR R1, setint

ADD R1, R2

STR RO, [R1]

BX LR

@ Initialize the GPIO to SIO. r0 = pin to init.
gpioinit:
@ Initialize the GPIO

MOV R3, #1

LSL R3, RO @ shift
over to pin position

LDR R2, gpiobase @ address
we want

STR  R3, [R2, #SIO GPIO OE SET OFFSET]
STR  R3, [R2, #SIO GPIO OUT CLR OFFSET]

@ Enable input and output for the pin
LDR R2, padsbank0

LSL R3, RO, #2 @ pin * 4
for register address
ADD R2, R3 @ Actual

set of registers for pin
MOV~ R1, #PADS BANKO GPIOO IE BITS
LDR R4, setoffset
ORR R2, R4
STR R1, [RZ2, #PADS_BANKO_GPIOO_OFFSET]



@ Set the function number to SIO.
MOV R4, RO

LSL R4, #3 @ each
GPIO has 8 bytes of registers

LDR R2, iobankO0 @ address
we want

ADD R2, R4 @ add the

offset for the pin number

MOV R1, #FUNCSEL VALUE SIO

STR R1, [R2, #IO BANKO GPIOO CTRL OFFSET]
#if HAS PADS BANKO ISOLATION
@ Remove pad isolation now that the correct
peripheral is set

LDR R2, padsbank0

LSL R3, RO, #2 @ pin * 4
for register address
ADD R2, R3 @ Actual

set of registers for pin

LDR R4, clearoffset

ADD R2, R4

LDR R1, PBGIB

STR R1, [R2, #PADS BANKO GPIOO OFFSET]
#endif

BX LR

@ Turn on a GPIO pin.

gpio on:

MOV R3, #1

LSL R3, RO @ shift
over to pin position

LDR R2, gpiobase @ address
we want

STR  R3, [R2, #SIO GPIO OUT_ SET OFFSET]

BX LR

@ Turn off a GPIO pin.
gpio off:



MOV R3, #1

LSL R3, RO @ shift
over to pin position

LDR R2, gpiobase @ address
we want

STR  R3, [R2, #SIO GPIO OUT CLR OFFSET]

BX LR

.align 4 @

necessary alignment
gpiobase: .word SIO BASE @ base of
the GPIO registers
iobankO: .word IO BANKO BASE @ base of
io config registers
padsbankO: .word PADS BANKO BASE
setoffset: .word REG ALTAS SET BITS
clearoffset: .word REG_ALIAS CLR BITS
ppbbase: .word PPB BASE
#if defined(PICO RP2040)
timerbase: .word TIMER BASE
vtoroffset: .word MOPLUS VTOR OFFSET
clearint: .word MOPLUS NVIC ICPR OFFSET
setint: .word  MOPLUS NVIC ISER OFFSET
felse
timerbase: .word TIMERO BASE
vtoroffset: .word  M33 VTOR OFFSET
clearint: .word M33 NVIC ICPRO OFFSET
setint: .word M33 NVIC ISERO OFFSET
PBGIB: .word PADS BANKO GPIOO ISO BITS
#endif
alarmtime: .word 200000
printstr: .asciz "Couting %d\n"
.data
state: .word 0

Listing 11-2 Flashing the LEDs via timer interrupts



There’s nothing special about the CMakeLists.txt file; it just needs to
compile timeint.S. Notice that everything was done using just registers
R0-R3, so no other registers needed to be saved.

Note The defined(PICO_RP2040) is tested in the conditional
compiles to determine which include files and constants to use.

That example used hardware interrupts. Now a note on software
interrupts.

About the SVCall Interrupt

The SVCall interrupt is a useful mechanism to implement operating
system calls or to have the ability to call a routine without needing to
link to it at compile time. This interrupt is triggered when a program
executes the Supervisor Call (SVC) instruction:

SVC parameter

The parameter is an 8-bit immediate operand that allows 256
possible values. Linux uses this to call the operating system where the
parameter is the Linux function number, and then the registers contain
the parameters to that function where their exact values depend on
which function it is.

Using the SDK

The SDK wasn’t used so far, to provide a bare metal explanation of the
interrupt process as is typically used by Assembly Language
programmers. However, the SDK contains multiple useful functions for
managing interrupts and for devices like the timer. It has support for
higher-level functionality. It is worth reviewing what the SDK contains
to save some coding. Further, the complete source code for the SDK is
posted to GitHub, which provides a wealth of sample code.

Summary



Interrupts are a mechanism where the running program can be
interrupted at any point, and control is passed to a configured interrupt
handler. Interrupts typically originate from hardware devices when
new data arrives or needs attention. In this chapter the architecture of
the ARM Cortex-M-series interrupt system was studied, including how
to set an interrupt handler and enable and configure interrupts, as well
as how state is saved and how interrupts can be interrupted in a nested
manner.

The Pico-series’ timer device was looked at next in detail including
how to use it to set alarms to interrupt the program on a regular basis.
A complete program was examined to demonstrate all these concepts in
action, again while flashing the three LEDs. Then software-triggered
service interrupts were shown, and the Pico-series SDK support was
mentioned.

So far only the addition and subtraction of integers were covered.
Chapter 12 covers a much broader set of mathematical operations.

Exercises

1.
Most software engineers work hard to make their interrupt
handlers operate as fast as possible, leading many to be written in
Assembly Language. Why do they do this? Does it matter how long
an interrupt handler takes to execute and why?

Debugging the program shows that the IVT is at the start of SRAM
at memory location 0x20000000. Why not hard-code that in the
program and save a couple of instructions?

Modify the state machine in the sample program to create a pattern
where two LEDs are lit at the same time.

Implement the sample program in C using the SDK.

Create a small Assembly Language program to use the SVC
instruction and handle the interrupt, printing something to know
that it was triggered.
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In this chapter, we return to using mathematics. We’ve already covered
addition, subtraction, and a collection of bit operations on our 32-bit
registers. How to perform more advanced mathematical functions is
now explained.

Modern microcontrollers are quite sophisticated devices, but to
keep costs low, they have far fewer transistors than full desktop CPUs
like the ARM A-series. As a result, they lack the full floating-point units
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and sophisticated mathematics that their big brothers support. When a
vendor such as Raspberry licenses an ARM M-series CPU, they can
select from a number of options to include or exclude depending on
their price target and desired transistor count.

The built-in and optional mathematical components included with
the ARM Cortex-MO+ included in the RP2040 and the M33 included in
the RP2350 are quite different. Table 12-1 summarizes these
differences.

Table 12-1 Comparison of the mathematical capabilities of the RP2040 versus
RP2350

Operation RP2040 RP2350
Integer multiplication Included Included
Integer division Coprocessor Included
DSP (Digital Signal Processor)-type function | Coprocessor Coprocessor
Single-precision floating point Boot-ROM library | FPU
Double-precision floating point GCClibrary Partial-FPU

This chapter covers the abilities of the RP2350, since it makes sense
to use this processor if these are needed. For instance, to perform a
single-precision floating-point instruction using the library in the boot
ROM typically takes 70 cycles, whereas the FPU in the RP2350 can
perform this in two to three cycles.

Multiplication

Integer 32-bit multiplication is built into the ARM Cortex-M-series, and
the instruction set includes the MUL instruction:

MUL Rd, Rn

This instruction calculates Rd = Rd * Rn and executes in one clock
cycle. Multiplying two 32-bit integers results in a 64-bit integer;
however, this instruction simply discards or doesn’t calculate the upper
32 bits. This works fine for smaller integers and equally well for signed



or unsigned integers (Exercise 2), since the difference is in the
discarded upper 32 bits. Here are a few examples:

MOV R2, #25
MOV R3, #5

MUL R2, R3 @ R2 = 125
NEG R3, R3 @ R3 = -5
MUL R2, R3 @ R2 = -625

Multiplication is straightforward within its limitations. Now look at

division.

Division

The ARM Cortex-M0+ doesn’t have division instructions; however, the
RP2040 adds a division coprocessor that performs a 32-bit integer
division in eight clock cycles. The M33 has division built in, so the
RP2350 has a division instruction. The division instructions are

SDIV {Rd}, Rn, Rm
UDIV {Rd}, Rn, Rm

where

Rd: Is the destination register
Rn: Is the register holding the numerator
Rm: Is the register holding the denominator

There are a few problems or technical notes on these instructions:

There is no “S” option of this instruction, as it doesn’t set the CPSR at
all.

Dividing by 0 should throw an exception; with these instructions it
returns 0, which can be very misleading.

The instruction only returns the quotient, not the remainder. Many
algorithms require the remainder, and this must be calculated as
remainder = numerator - (quotient * denominator).

The code to execute the division instructions is simple as follows:

MOV R2, #100



MOV R3, #4
SDIV R4, R2, R3
UDIV R4, R2, R3

Interpolation

Both the RP2040 and RP2350 have two interpolator coprocessors for
each ARM CPU core. These interpolators assist in several common
algorithms used in audio and video processing. They can also assist in
processing data being received into one of the Pico-series /0 devices.
Consider the interpolators as a poor man’s Digital Signal Processor
(DSP). Many cell phone SoCs contain DSP processing blocks; however,
at this point Raspberry can’t include a full DSP in their four-dollar chip.

DSPs typically perform full floating-point computations, contain
instructions that are helpful for processing input signals, and have their
own instruction sets. The Pico-series interpolators can assist with some
of the same algorithms as full DSP chips but still rely on the ARM
Cortex-M-series to do much of the work. The interpolators contain their
own registers and perform addition, multiplication, and some bit
operations. They’re intended to be used in loops where the result of
each calculation cycle updates an accumulator. Each iteration step the
interpolator performs takes one machine cycle.

The interpolator is complex and configurable. Rather than starting
with the full picture, piece by piece is built up starting with the simplest
example of adding some integers.

The hardware registers for the interpolator are defined in sio.h;
however, the offsets are too large to use as immediate mode offsets in
LDR and STR instructions. This time, rather than perform the address
calculations in the Assembly Language code, let the GNU Assembler do
the arithmetic, starting with a new base address:

INTERP BASE: .word SIO BASE +
SIO INTERPO ACCUMO OFFSET

where SIO_INTERPO_ACCUMO_OFFSET is the offset of the first
interpolator register. Now the various registers can be accessed with
instructions like



LDR  R3, INTERP BASE
STR RO, [R3, #(SIO INTERPO ACCUMO OFFSET-
SIO INTERPO ACCUMO OFFSET) ]

The .EQU directive will be used for each of these, to keep the length
of each line down. The first and easiest example is next.

Adding an Array of Integers

To get used to working with the interpolator, first of all is the simplest
case of adding an array of 32-bit integers. Here, only one of the control
registers and one of the two accumulators are accessed. Within the
interpolator there are two lanes, discussed later in this chapter; for this
example only lane 0 is used. Each lane has a control register that
configures how the data flows and which operations to perform.

In this simple example, the lane control register
SIO_INTERPO_CTRL_LANEO is configured for raw addition only, which
leaves most other things within the interpolator turned off. The
accumulator is initialized to zero. Then every time a value is set to the
SIO_INTERPO_ACCUMO_ADD register, the value is added to
accumulator 0. At the end, the value from accumulator O is read for the
final result. Listing 12-1 shows the Assembly Language code to perform
this.

.EQU INTERPO CTRL LANEQO OFF,
(SIO INTERPO CTRL LANEO OFFSET-
STO INTERPO ACCUMO OFFSET)

.EQU INTERPO ACCUMO OFF,
(STO_INTERPO ACCUMO OFFSET-

STO INTERPO ACCUMO OFFSET)

.EQU INTERPO ACCUMO ADD OFF,
(STO_INTERPO ACCUMO ADD OFFSET-
SIO INTERPO ACCUMO OFFSET)

interp: MOV RO, #0 @ init value for
accum0

MOV R1, #4 @ increment for array
of nums



MOV
counter

LDR

MOV

LSL

R2, #1 @ decrement for

R3, INTERP BASE
R4, #1
R4,

#SI0 INTERPO CTRL LANEO ADD RAW LSB

STR
STR
LDR
LDR
nextnum: LDR
STR
ADD
SUB
BNE
LDR

R4, [R3, #INTERPO CTRL LANEQO OFF]
RO, [R3, #INTERPO ACCUMO OFF]

R7, numsumdata

R6, =sumdata

R4, [R6]

R4, [R3,#INTERPO ACCUMO ADD OFF]
R6, R1

R7, R2

nextnum

RO, [R3, #INTERPO ACCUMO OFF]

Listing 12-1 Using one of the interpolators to add an array of integers

This is a complicated way to add an array of integers, especially
when the ARM CPU can do this itself. A lot of the code is to initialize the
interpolator and then the overhead of the loop, which reads and
processes the array of numbers. Here’s the complete set of interpolator

registers:
1.

BASEOQ, BASE1, BASE2: The numbers in these registers are input to

the process.

ACCUMO, ACCUM1: The two accumulator registers, although
ACCUM1 is an input when multiplying. Bit operations can be
applied to the accumulators as part of each cycle.

RESULTO, RESULT1, RESULT2: The result registers that contain
the calculations for each step. These can be fed back into the
accumulators as part of the step.

The calculations the interpolator carries out depend on several
parameters in the control registers. A typical calculation looks like



RESULTO = lower8bits (ACCUMO) + BASEOQ
RESULT]1 = rightshift8bits (ACCUM1) + BASE1
RESULT2 = RESULTO + RESULT1 + BASEZ2

Then RESULTO0 and RESULT1 can be fed into the accumulators for
another iteration. The two accumulator calculations are referred to as
the two calculation lanes and are configured separately. The bit
operations are to AND by a series of 1 bits, perform a right shift, and
perform a sign extension. These are typically used to extract byte data
from a 32-bit word containing 4 bytes, perhaps 4 bytes of grayscale
data. Next is how to interpolate between values and why this
coprocessor is called an interpolator.

Interpolating Between Numbers

To perform interpolation, configure lane 0, containing accumulator 0
for blend mode. In blend mode the interpolator calculates

RESULT1 = BASEO + ACCUM1 * (BASE1l - BASEOQ)

This formula uses elements from both lanes, dedicating more of the
interpolator. The multiplier is the lower 8 bits of ACCUM1 after bit
operations, interpreted as a fraction out of 255. This results in
multiplying the difference of BASE1 and BASEO by a number between 0
and 1. This is interpolation: if ACCUM1 is 0, then RESULT1 is BASEOQ; if
ACCUM1 is 255, then RESULT1 is BASE1; and any other value of
ACCUM1 will be between BASEO and BASE1 by the fractional amount.

The Assembly Language code to perform this calculation is
contained in Listing 12-2. This program also calculates the sum of these
interpolations, since ACCUMO isn’t used otherwise. If BASEO is zero,
then this calculates
Result = a; * by + a, * b, + ... + a, * Db

n n

This is the calculation used when multiplying a matrix by a vector or
a matrix by a matrix. This is helpful in Machine Learning, the limitation
being that a; needs to be normalized between 0 and 1, and then the



multiplication isn’t as accurate as a full floating-point calculation but is
much faster.

.EQU INTERPO BASE0O OFF, (SIO INTERPO BASE0O OFFSET-
STO INTERPO ACCUMO OFFSET)

.EQU INTERPO BASEl OFF, (SIO INTERPO BASEl OFFSET-
STO INTERPO ACCUMO OFFSET)

.EQU INTERPO ACCUMI1 OFF,

(STO INTERPO ACCUM1 OFFSET-

SIO INTERPO ACCUMO OFFSET)

.EQU INTERPO PEEKl OFF,

(SIO INTERPO PEEK LANEl OFFSET-

STO INTERPO ACCUMO OFFSET)

.EQU INTERPO CTRL LANEl OFF,
(STO_INTERPO CTRL LANEl OFFSET-

STO INTERPO ACCUMO OFFSET)

@ Simple interpolation

interp2: MOV RO, #0 @ init value for
accuml

MOV R1, #4 @ increment for
array of nums

MOV R2, #1 @ decrement for
counter

MOV R3, #63

MOV R8, R3

LDR R3, INTERP BASE

MOV R4, #1

LSL R4,
#STIO_INTERPO CTRL LANEO BLEND LSB

MOV R5, #1

LSL  R5,
#SI0 INTERPO CTRL LANEO ADD RAW LSB

ORR R4, R5

STR R4, [R3, #INTERPO_CTRL_LANEO_OFF]

MOV rd, #248 @ 0xf8

LSL rd, rd, #7 @ becomes 0x7c00



STR R4, [R3, #INTERPO_CTRL_LANEI_OFF]
STR RO, [R3, #INTERPO_ACCUMO_OFF]
LDR R7, numsumdata
LDR R6, =sumdata
nextnum?2: LDR R4, [RO]

STR R4, [R3,#INTERPO BASEO OFF]

ADD R6, RI

LDR R4, [R6]

STR R4, [R3,#INTERPO BASEl OFF]

STR RO, [R3,#INTERPO ACCUMl OFF]

ADD RO, RS

LDR R4, [R3,#INTERPO PEEKl OFF]

STR R4, [R3,#INTERPO ACCUMO ADD OFF]
ADD R6, RI

SUB  R7, R2

BNE nextnum?2
@ Read the sum stored in accumulator O
LDR RO, [R3, #INTERPO ACCUMO OFF]

Listing 12-2 Code to interpolate between some numbers and keep the sum of the results

Lane 0 is configured for blend mode and raw add mode. The
necessary bit pattern could’ve been derived and done this in fewer
instructions, but since this is initialization code, it was left separate for
readability.

Lane 0 needed to be configured to not mask any bits; the
configuration is to allow bits 0 to bits 31 through, which is what is
needed in this case, see Exercise 3.

To read the result registers, read either the PEEK or POP register.
PEEK reads the result without doing anything else. POP reads the
value, but also moves the result registers to the accumulators,
depending on how the control registers are configured.

As the program goes through the loop, it reads the results but
doesn’t do anything with them. The program runs under gdb, and the
results are viewed by single stepping through the program.

The interpolator has other tricks like clamping the result range and
configuring the movement of data in the lanes. The RP2350 Datasheet
has a complete reference of all the functionality, and the Pico-series



SDK samples have a good selection of algorithms making use of the
interpolator. How to use floating-point numbers and arithmetic from
the Assembly Language programs is covered next.

Floating Point

The RP2040 doesn’t have floating-point hardware and relies on
optimized routines contained in the Raspberry Pico 1 boot ROM. The
M33 contained in the RP2350 contains a single-precision floating-point
FPU, greatly speeding and simplifying floating-point calculations.

Defining Floating-Point Numbers

The GNU Assembler has directives for defining storage for both single-
and double-precision floating-point numbers. These are .single and
.double, for example:

.single 1.343, 4.343e20, -0.4343, -0.4444e-10
.double -4.24322322332e-10, 3.141592653589793

These directives always take base 10 numbers. The RP2350 only
supports single-precision floating point, but there is support for double
precision in a separate coprocessor.

About Floating-Point Registers

The ARM FPU has its own set of registers. There are 32 single-precision
floating-point registers that are referred to as SO, S1, ..., S31.

Chapter 7 gave the protocol for who saves which registers when
calling functions. These floating-point registers need to be added to the
protocol.

e Callee saved: The function is responsible for saving registers S16-
S31, if the function uses them.

e Caller saved: Registers S0-S15 must be saved by the caller if they
are required to be preserved.

There are FPU-specific functions to access these registers, for
instance, to push and pop these to and from the stack:



VPUSH {reglist}
VPOP {reglist}

For example:

VPUSH {S16-S31}
VPOP {S16-S31}

Loading and Saving FPU Registers

In Chapter 6, the LDR and STR instructions were covered to load
registers from memory and then store them back to memory. The
floating-point coprocessor has similar instructions for its registers:

VLDR Sd, [Rn{, #offset}]
VSTR Sd, [Rn{, #offset}]

Both instructions support pre-index addressing offsets, for example:

LDR R1, =fpl
VLDR  S4, [R1]
VLDR  S4, [R1, #4]
VSTR  S4, [R1]
VSTR  S4, [R1l, #4]

.data

fpl: .single 3.14159
fp2: .single 4.3341
fp3: .single 0.0

Basic Arithmetic

The floating-point processor includes the four basic arithmetic
operations, along with a few extensions like square root.
Here is a selection of the instructions:

VADD.F32 {sd}, Sn, Sm
VSUB.F32 {sd}, Sn, Sm
VMUL.F32 {Sd,} Sn, Sm



VDIV.F32 {Sd}, Sn, Sm
VSQRT.F32 Sd, Sm

If the destination register is in curly brackets {}, it is optional so it
can be left out. This means apply the second operand to the first, so to
add S1 to S4, simply write

VADD.F32  S4, S1

These functions are all fairly simple, so next is an example to show
many of these in use.

Sample Floating-Point Program
Given two points (x4, y1) and (X5, y,), then the distance between them is
given by the formula

d = sqrt( (y2y1)* + (x2%1)?)

Listing 12-3 is a function to calculate this for any two single-

precision floating-point pair of coordinates. Place this function in the
file distance.S.

Example function to calculate the distance
between two points in single precision
floating point.

Inputs:
RO - pointer to the 4 FP numbers
they are x1, vyl, x2, y2
Outputs:
RO - the length (as single precision FP)

® @ @ @ @ ® ® ® ® @

.global distance @ Allow function to be
called by others

@
distance:
@ push registers that need to be saved



push {LR}

@ load all 4 numbers at once
v1dm RO, {S0-S3}

@ calc s4 = x2 - x1

vsub.f32 s4, S2, SO

@ calc s5 = y2 - vyl

vsub.f32 s5, S3, Sl

@ calc s4 = S4 * S4 (x2-X1)"2
vmul.f£32 sS4, S4

@ calc s5 = s5 * s5 (Y2-Y1)"2
vmul.f£32 S5, S5

@ calc S4 = S4 + S5

vadd.f32 S4, S5

@ calc sgrt (S4)

vsqgrt.f32 sS4, S4

@ move result to RO to be returned
VIowv RO, S4

@ restore what we preserved.
pop {PC}

Listing 12-3 Function to calculate the distance between two points

Now place the code from Listing 12-4 in floatingpoint.S, which
calls distance three times with three different points and prints out the
distance for each one.

@
@ Examples of the floating point routines.

@

.thumb func @ Necessary because
sdk uses BLX
.global main @ Provide program

starting address to linker

.equ N, 3 @ Number of points.



main: BL stdio init all @ initialize uart or
usb

1dr r6, =points @ pointer to current
points

mov r7, #N @ number of loop
iterations
loop: mov r0, r6 @ move poilnter to
parameter 1 (r0)

bl distance @ call distance
function

@ need to take the single precision return value
@ and convert it to a double, because the C printf
@ function can only print doubles.

bl __aeabi f2d
mov r2, r0
mov r3, rl
1dr r0, =prtstr @ load print string
bl printf @ print the distance
add ro, #(4*4) @ 4 points each 4
bytes
sub r7, #1 @ decrement loop
counter
cmp r7, #0 @ is the loop done?
bne loop @ loop 1f more points
loop2:
B loop?2
.data
.align 4 @ necessary
alignment
points: .single 0.0, 0.0, 3.0, 4.0
.single 1.3, 5.4, 3.1, -1.5
.single 1.323el10, -1.2e-4, 34.55, 5454.234

prtstr: .asciz "Distance = $f\n"



Listing 12-4 Main program to call the distance function three times

Some Notes on C and printf

Besides the usage of the FPU instructions like vmul.f32, there is a call
to __aeabi_f2d to convert the 32-bit floating-point number for the
distance to a 64-bit number. The reason is that for a C function that
takes a variable number of arguments, all floats are promoted to
doubles. If a float is passed, then printf prints garbage or generates a
fault. There’s no way to pass a single-precision float to printf; it only
takes a 64-bit double-precision floating-point number.

Passing 64-bit quantities in Chapter 7 wasn’t discussed, but to do so
uses two 32-bit registers, if they are available or are placed on the
stack. As a parameter, the 64-bit quantity can either go in RO and R1 or
into R2 and R3. Beyond that they go on the stack. Placing 64-bit
quantities in R1 and R2 is not allowed and why R1 is not used in calls
to printf. A 64-bit quantity can be returned in registers RO and R1,
which is in the code.

The FPU integrated into the RP2350 doesn’t contain any conversion
routines, so these must be performed in software outside of the FPU. In
this case a routine from the Pico-series SDK is used.

Summary

In this chapter, the integer multiplication and division instruction were
studied. Next, the Pico-series interpolator coprocessor and how to use
it to interpolate as well as perform multiply and accumulate operations
were covered. The interpolator also has some bit manipulation
operations that combine to give limited DSP-like capabilities for input
data processing.

The RP2350 contains a single-precision floating-point unit; the
registers and basic instructions for floating-point operations were
presented. An example to calculate the distance between two points
was then examined to see how to use all these instructions together. An
aside on converting single- to double-precision numbers was presented
to explain how to use printf to see the results.

So far in this book everything was done on one of the two ARM
Cortex-M-series CPU cores. In Chapter 13, how to use the second CPU



core and coordinate the work between the two CPUs is explained.

Exercises

1.

Create a small program using the multiplication and division
examples and single step through it in the debugger to ensure how
it works is understood.

Examine the bits of calculating -1 * 4 to see why it works either
interpreting these as unsigned or signed integers.

In the interpolation example, lane 1 was set to the value 0x7c00.
Look up the definition of the bits for the lane control register in the
RP2350 Datasheet and see how this allows all the bits through with
no masking.

The area of a circle is 1 * r?. Write a small Assembly Language
program that uses the FPU floating-point routines to calculate the
area of circles with radii 1, 1.4, and 3. Print out the results.
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The Pico-series contains two ARM Cortex-M-series CPU cores. This
chapter looks at how to run code on the second processor. The second
processor is in power-conserving sleep state by default; how to wake it
up and assign it work to process will be shown. The Raspberry
company added the following helpful features to the Pico-series for
working with both CPU cores:

1.
There are two First-In-First-Outs (FIFOs), one for core 0 to send

data to core 1 and the other for core 1 to send data to core 0.
2. There are 32 spinlocks that can be assigned to control access to
shared resources such as common memory areas.
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3.
The RP2350 adds a doorbell interrupt where one core can

interrupt the other core.

These are used in the sample programs, as well as three new ARM
Assembly Language instructions for putting a CPU to sleep and waking
it up. First, become familiar with these new instructions.

About Saving Power

Previously, waiting was done by entering tight loops; even the SDK’s
sleep_ms routine doesn’t really sleep, but rather enters a tight loop.
This is fine, except that the CPU uses power to do this; however, the
ARM CPU has a good power-saving mode. This can be important to save
battery life when running off a battery or to reduce the heat generated
by the Pico-series chip.

Since most applications don’t use the second CPU, it’s put in a low-
power mode by the boot ROM and often remains that way. Here are
new instructions to wake up or put to sleep the second CPU, but these
can also be useful in other circumstances. The three new instructions
are

1.
SEV: Send an event. Causes a wakeup event to be sent to both

processors.

WFE: Wait for an event. Enter a low-power state until an event is
signaled. This command will also wake up for a higher-priority
interrupt or debug event.

WEFI: Wait for an interrupt. Enter a low-power state until an
asynchronous interrupt is received.

Note These instructions are classified as hints to the processor,
meaning the processor is free to ignore them if it wants. Generally,
put WFE or WFI instructions in a loop since they may wake up
prematurely or may not go to sleep immediately. This is to allow the




CPU to finish up other operations, such as writing cache data to the
main memory before going to sleep.

Next, the instructions for the CPU core-to-core FIFO communication
channel follow.

About Interprocessor Mailboxes

The Pico-series provides two FIFOs for interprocessor communications,
and each FIFO contains eight 32-bit words. One FIFO is written by core
0 and read by core 1 and the other read by core 0 and written by core 1.
The same hardware registers are used by both, and the correct FIFO is
used based on which does the reading or writing. The FIFO hardware is
part of the Pico-series SIO hardware module, and hence the defines for
it are in sio.h. A CPU sends a message to the other CPU’s mailbox with

LDR R1, siobase
STR RO, [Rl, #SIO FIFO WR OFFSET]

siobase: .WORD SIO BASE

To read a message use the following code:

LDR R1, siobase
LDR RO, [R1, #SIO FIFO RD OFFSET]

The preceding code is fine as long as there is room in the FIFO in the
write case and if there is data available to read in the read case. To
determine these, there is a status register. The status register has bits to
tell whether the FIFO

1.
Contains data

2.
[s full

3.
Was read when empty

4. Was written to when it was full, so it was discarded



Cases 1 and 2 are the most often used; cases 3 and 4 probably
indicate a program bug. A more complete FIFO pop routine is given in
Listing 13-1.

fifo pop:

@ If there is data in the fifo, then read it.
LDR R1, siobase
LDR RO, [R1, #SIO_FIFO_ST_OFFSET]
MOV ~ R2, #SIO FIFO ST VLD BITS
AND RO, R2
BNE gotone
WEFE @ No data so go back to sleep

B fifo pop @ try again i1f woken
gotone: LDR RO, [R1, #SIO FIFO RD OFFSET]
BX LR

Listing 13-1 Interprocessor FIFO read routine

This routine is blocking; if there’s no data, then it puts the processor
to sleep and waits for data. For this to work, the routine called by the
other core must add the SEV routine after writing to the FIFO to wake
this processor up. With these tools, how to get code running on the core
1 CPU is looked at.

How to Run Code on the Second CPU

When the Pico-series is powered on, both CPU cores receive a RESET
interrupt and the initial IVT located at memory address 0x0 has the
routine _start set as the interrupt handler. The first thing _start does is
determine which CPU it's running as using

LDR RO, =SIO BASE

LDR R1, [RO, #SIO CPUID OFFSET]

CMP R1, #0 @ are we core 07

BNE wait for vector @ not 0, so much be
core 1



The wait_for_vector routine configures the second CPU for deep
sleep mode and then waits on the interprocessor mailbox FIFO for data
to be sent from the first CPU. The data it’s waiting for is shown in Table
13-1.

Table 13-1 Data sent to the second CPU to start it

Sequence | Contents | Description

0 0 Magic number

1 0 Magic number

2 1 Magic number

3 IVT Interrupt Vector Table (use the one for core 0)
4 SP Top of stack (stack grows down)

5 routine | Thumb routine to run (address must be odd)

The code that follows provides the same IVT as core 0, but a
completely different IVT could be built for the second core. Keep in
mind that it only receives interrupts if the interrupt is enabled by code
running on that core. A stack in the data segment is defined, and the top
of the stack is passed in the SP parameter.

Note Remember that the stack grows downward.

The last parameter is the address of the routine to run; it must be
defined as a thumb function. Since this routine is run via a BLX
instruction, the address must be odd. This gives enough information to
write a sample program to use the second core for processing. The code
for all this is located in the bootrom_rt0.S file from the RP2040 or
arm8_bootrom_rt0.S for the RP2350 in their respective bootrom
github repositories.

A Multiprocessing Example

To take an array of numbers and for each number to compute both the
factorial and Fibonacci number, this program is easily written by calling
two routines in turn on the same CPU core. However, performance is



important, and both these computations are independent of each other.
In this case, the Fibonacci number is calculated on core 0 and the
factorial on core 1. First of all, read the following review Fibonacci
numbers and factorials.

About Fibonacci Numbers
The Fibonacci numbers form a sequence (F,,) where each number is the
sum of the preceding two numbers starting with 0 and 1, that is:

and

= Fn—l + Fn—Z

The first few numbers are
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

Fibonacci numbers appear in nature quite often and are closely
related to the golden ratio (® = (1 + V5) / 2 = ~1.618), which is also the
limit of the ratio of consecutive Fibonacci numbers as n goes to infinity.

About Factorials

The factorial of a positive integer n, denoted n!, is the product of all the
positive integers less than or equal to n. Thus:

n! = nx (n-1) x (n-2) x ... x 3 x 2 x 1

Factorials grow quickly, so in 32 bits the first few of these can be
calculated. The first few factorials are

1, 2, 6, 24, 120, 720, 5040, 40320,

Factorials are common in probability and combinatorics. With these
in hand, the complete program is presented.

The Complete Program



Listing 13-2 presents the complete listing, which should go in a file
multicore.S and accompany a standard CMakelLists.txt file.

@
@ Example using the second core for processing.

@

#include "hardware/regs/addressmap.h"
#1if defined (PICO RP2040)

#include "hardware/regs/mOplus.h"
felse

#include "hardware/regs/m33.h"

#endif

#include "hardware/regs/sio.h"

.thumb func @ Necessary
because sdk uses BLX
.global main @ Provide

program starting address to linker

main: BL stdio init all @ initialize
uart or usb

BL launch_corel

MOV R4, #0 @ i =0
LDR R5, numNumbers
LDR R6, =numbers
forloop: CMP R4, R5
BGE mainloop

LDR RO, [R6] @ next number
BL fifo push

LDR RO, [Ro]

BL fibonacci

MOV R2, RO

LDR R1, [R6]

LDR RO, =fibprintstr
BL printf



ADD R4, #1
ADD R6, #4
numbers
B forloop
mainloop:
B mainloop
.align 4
numNumbers: .WORD 5
numbers: .WORD 3, 5, 7, 10, 12
fibprintstr: .ASCIZ "Core 0 n = %d
$d\n"
factprintstr: .ASCIZ "Core 1 n = %d
Sd\n"
.thumb func
corelentry:
PUSH {LR}
infinite:BL fifo pop
to calculate
MOV R4, RO
the printf
BL factorial
factorial
MOV R2, RO
parameters for printf
MOV ~ R1, R4
LDR RO, =factprintstr
BL printf
B infinite
next number
POP {PC}
called.
fifo push:

@ Push data to the fifo,

LDR

R1, siobase

@1 =1 + 1
@ next word in

fibonacci =

factorial =

@ read number
@ keep n for
@ call

@ set

@ repeat for

@ never

without waiting.



STR RO, [R1, #SIO FIFO WR OFFSET]

SEV @ Wake up the
other core

BX LR

fifo pop:

@ If there is data in the fifo, then read it.
LDR R1, siobase
LDR RO, [R1, #SIO FIFO ST OFFSET]
MOV ~ R2, #SIO FIFO ST VLD BITS
AND RO, R2
BNE gotone

WFE @ No data so
go back to sleep

B fifo pop @ try again 1f woken
gotone: LDR RO, [R1, #SIO FIFO RD OFFSET]

BX LR

fifo drain:
@ Read the fifo 8 times to ensure its empty then
wake up
@ the other core.
LDR R1, siobase

LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET

[ ]
[ ]
[ ]
[ ]
LDR RO, [R1, #SIO FIFO RD OFFSET]
[ ]
[ ]
[ ]

LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET
SEV

BX LR

launch corel:
@ To start corel, writes the magic sequence:
@ 0, 0, 1, ivt, stack, routine



@ to corel's FIFO.

PUSH

BL

{LR}
fifo drain

anything left over

MOV
BL
BL
MOV
BL
BL
MOV
BL
BL
LDR
LDR
ADD
LDR
BL
BL
LDR
BL
BL
LDR
BL
BL
POP

.align 4
siobase:
ppbbase:

RO, #0

fifo push

fifo pop

RO, #0

fifo push

fifo pop

RO, #1

fifo push

fifo pop

R2, ppbbase
R1, vtoroffset
R2, RI1

RO, [R2]

fifo push

fifo pop

RO, =stackl end
fifo push

fifo pop

RO, =corelentry
fifo push

fifo pop

{PC}

.WORD SIO BASE
.word PPB BASE

#1f defined (PICO RP2040)

vtoroffset:
#else
vtoroffset:
#endif

.word

.word

M33 VTOR OFFSET

@ Clear

MOPLUS VTOR OFFSET



@ RO = fibonacci - in RO since this is
returned
@ R1 = £0
@ R2 = f1
@ R3 = 1
@ R4 = n
fibonacci:
PUSH ({R4}
MOV R4, RO @
R4
MOV R1, #0 C
MOV R2, #1 @
MOV R3, #2 @
2
loop: CMP R3, R4
BGT done
ADD RO, R1, R2 @
fo + f1
MOV ~ R1, R2 @
MOV R2, RO @
fibonacci
ADD R3, #1 @
B loop
done: POP {R4}
BX LR @
in RO
@ RO = factorial
@ R1 = 1
@ R2 = n
factorial:
MOV R2, RO C
R2
MOV RO, #1 @
factorial
MOV R1, #2 @
loop2: CMP R1, RZ2

what is

Move n to

Initial fO
Initial f1
Initial i

fibonacci
fOo = f1
fl =

result is

Move n to

Initial



BGT done?

MUL RO, R1 @ factorial
*= i
ADD R1, #1 @i1i=14+1
B loop?2
done?2: BX LR @ result 1is
in RO
.align 4
.data
stackl: .FILL 0x800, 1, O

stackl_end: .WORD 0

Listing 13-2 Multiprocessor program to calculate Fibonacci numbers and factorials

The routines that calculate Fibonacci numbers and factorials are
straightforward, implementing a simple FOR loop to calculate the
desired number. It’'s worth reviewing these to ensure understanding of
how these simple calculations are performed in Assembly Language.

These three routines handle the interprocessor FIFO mailbox:

fifo_drain: Read the FIFO eight times to ensure it’s empty. The SDK
warns that there could be leftover data in the FIFO, and if run in the
debugger, observe there is one value left over that needs clearing. It
also calls SEV in case either processor has more processing to do
after this happens.

fifo_push: Writes one word to the FIFO. This routine isn’t blocking
and doesn’t check if the FIFO is full. In this case, the protocol means
there’s only one word in the FIFO at a time. The routine then calls
SEV to wake up the other processor to read the value. See Exercise
2 to implement blocking.

fifo_pop: Checks the status register to see if there’s data available;
if there isn’t, it goes to sleep by issuing a WFE instruction and loops
back. If there’s data, then it reads the data and returns it to the
caller.



The routine to start the second core is launch_core1l. This routine
first clears any data left over in the FIFO and then executes the launch
protocol to start the code running there. This involves writing the data
it requires to the FIFO, after each word waiting for the same data to be
echoed back. Listing 13-2 doesn’t verify the data returned is the same
as that sent. Strictly speaking it should verify the core 1 code has
responded with what it sent and if not then start over; see Exercise 1.
Once core 1 is running, it listens to the interprocessor mailbox FIFO for
data to process.

The main routine starts core 1 going and then reads the array of
numbers targeted for performing the calculations. It pushes the
number to the FIFO for core 1 to calculate the factorial and then goes
ahead and calculates the Fibonacci number.

Each core prints its result using a printf statement. This works
because the Pico-series SDK ensures that printf is multiprocessor-safe.
On some systems the characters would be jumbled together, but in this
SDK the printing of the whole string is atomic. See Exercise 3 for an
alternative way to do this.

Next are instructions on how to prevent the two CPU cores from
stepping on each other.

About Spinlocks

The routines presented so far are completely independent and don’t
share any data or resources. This usually isn’t the case when using two
processors; they normally need to access shared data, and that access
needs to be regulated, so that the two processors don’t interfere with
each other. For instance, if both processors update a table in memory;, it
isn’t desirable if one processor overwrites the work of the other. When
this goes wrong, this leads to hard-to-replicate bugs that are difficult to
find.

The Pico-series provides 32 spinlocks to regulate access to shared
resources. A spinlock is a resource that a CPU tries to acquire, but if the
other CPU has it, it fails and the program spins using a closed loop until
it's acquired.

Like everything else, spinlocks are controlled by a set of hardware
registers defined in sio.h. Of the 32 spinlocks, the first 16 are reserved



for exclusive use by the SDK, and then the other 16 are available for use
by programmers. If using the SDK, request a spinlock and one will be
allocated. Since the SDK isn’t being used, the program chooses spinlock
24, which is one the SDK will assign for exclusive use.

Each spinlock has a hardware register that controls it, and then
there is a separate hardware register that will show the status of all 32
spinlocks, which can be useful for debugging, since reading it doesn’t
change any spinlock’s state.

To acquire a spinlock, read its hardware register, and if it reads
nonzero, then it’s been successfully acquired; however, if the value read
is zero, spin the program to wait to acquire it. Listing 13-3 shows the
code to lock a spinlock.

LDR R1, spinbase
repeat: LDR RO, [R1]
@ if spinlock is non-zero then we got it, else try
again.

CMP RO, #0

BEQ repeat @ spin

spinbase: .WORD SIO BASE + SIO_SPINLOCK24_OFFSET
Listing 13-3 Code to lock a spinlock

To release a spinlock, any value is written to the spinlock’s
hardware register. Listing 13-4 shows the code to release a spinlock.

LDR R1, spinbase
STR RO, [R1] @ value written doesn't matter

Listing 13-4 Code to unlock a spinlock
Next is a complete program that makes use of spinlocks.

Regulating Access to a Memory Table

This example program uses both CPU cores to populate a table of the
numbers 0-99 and their squares. It also puts the core number in each
row, to mark the row as done, so which core filled in each row can be
seen. If spinlocks weren’t used, then the cores would overwrite each



other’s work. Even though a row is marked as used first, there’s a
window of opportunity where both cores read a row as available, then
both write to it at once, and the core writing second wins. Using
spinlocks to protect memory tables is common in operating systems,
like Linux that supports multiple cores. Listing 13-5 is the complete
program listing that should be called spinlock.S; after running, it will
print the table of squares to see what work was done and which core
filled in each row.

@
@ Example using the second core for processing.
@ Protecting a memory table with a spin lock.

@

#include "hardware/regs/addressmap.h"
#if defined(PICO RP2040)

#include "hardware/regs/mOplus.h"
felse

#include "hardware/regs/m33.h"

#endif

#include "hardware/regs/sio.h"

.thumb func @
Necessary because sdk uses BLX
.global main @ Provide

program starting address to linker

.EQU numEntries, 100
.EQU coreOffset, O

.EQU numOffset, 4

.EQU numSquaredOffset, 8
.EQU sizeTabRow, 12

.EQU emptyRow, 255

main: BL Stdio_init_all @
initialize uart or usb

BL launch corel



BL coremain

@ ensure everything finishes
MOV RO, #255
BL sleep ms

@ print out the table
MOV R4, #0 @i =20
LDR R5, =numEntries
LDR Ro, =table
printtab:
LDR RO, =printstr
LDR R1, [R6, #coreOffset]
LDR R2, [R6, #numOffset]
LDR R3, [R6, #numSquaredOffset]

BL printf

ADD R4, #1 @1 =1
1

ADD R6, #sizeTabRow

CMP R4, RS @ i =
numEntries?

BLT printtab
mainloop:

WFE @ lower
power now that we are done

B mainloop
.align 4
printstr: .ASCIZ "Core $d n = %d n * n = %d\n"
.align 4

.thumb func
coremain:
PUSH {R4, R5, Ro6, R7, LR}
MOV R4, #0 @ i =0
LDR R5, =numEntries
LDR R6, =table



MOV R7, #emptyRow
forloop:

@ lock spinlock

BL lockSpinLock

@ determine if current row is free

LDRB RO, [R6]

CMP RO, R7

BNE next @ not
free, continue

@ update table with core number, i, i*i

LDR R2, =5SI0 BASE

LDR R2, [R2, #SIO CPUID OFFSET]

@ unlock spinlock after marking row for
this core

BL unlockSpinLock

@ update next two fields

STR R2, [R6, #coreOffset]

STR R4, [R6, #numOffset]

MOV RO, R4

MUL RO, RO

STR RO, [R6, #numSquaredOffset]
@ Perform extra work, otherwise core 1 stays ahead
@ of core 0 and allocates all the table slots.

.REPT 10

NOP

.ENDR
@ spinlock already unlocked, so jump ahead

B cont
next:

@ unlock spinlock in case table entry
taken

BL unlockSpinLock
cont: ADD R4, #1 @ i =1 +
1

ADD R6, #sizeTabRow
CMP R4, R5
BLT forloop



@ Only return if we are core 0.

LDR
LDR
CMP
BEQ
WE'E
B

sleep:

ret: POP

lockSpinLock:
LDR
repeat: LDR
@ if spinlock
again.
CMP
BEQ

BX L

R2,
R2,
R2,
ret

=STO BASE
[R2, #SIO _CPUID OFFSET]
#0

sleep

{R4, R5, R6, R7, PC}

R1, spinbase
RO, [R1]
is non-zero then we got 1it,

RO, #0
repeat
R

unlockSpinLock:

LDR

@ valu
STR

BX

fifo push:

@ Push data to
LDR
STR
SEV

the other core
BX

fifo pop:

@ If there 1is
LDR
LDR
MOV

R1, spinbase

e written doesn't matter
RO, [R1]

LR

the fifo,
R1, siobase
RO, [R1,

without waiting.

LR

data in the fifo,
R1, siobase

RO, [R1,
R2, #SIO FIFO ST VLD BITS

else try

#STIO _FIFO WR OFFSET]

@ Wake up

then read it.

#STO FIFO ST OFFSET]



AND RO, RZ2
BNE gotone

WFE @ No data
so go back to sleep
B fifo pop @ try

again if woken
gotone: LDR RO, [R1, #SIO FIFO RD OFFSET]
BX LR

fifo drain:
@ Read the fifo 8 times to ensure its empty then
wake up
@ the other core.
LDR R1, siobase

LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET

[ ]
[ ]
[ ]
LDR RO, [R1, #SIO FIFO RD OFFSET]
[ ]
[ ]
[ ]
[ ]

LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET
LDR RO, [Rl, #SIO FIFO RD OFFSET
SEV

BX LR

launch corel:
@ To start corel, writes the magic sequence:

G 0, 0, 1, ivt, stack, routine
@ to corel's FIFO.
PUSH {LR}
BL fifo drain @ Clear

anything left over
MOV RO, #0
BL fifo push
BL fifo pop
MOV RO, #0
BL fifo push



BL fifo pop

MOV RO, #1

BL fifo push

BL fifo pop

LDR R2, ppbbase
LDR R1, vtoroffset
ADD R2, R1

LDR RO, [R2]

BL fifo push

BL fifo pop

LDR RO, =stackl end

BL fifo push

BL fifo pop

LDR RO, =coremain

BL fifo push

BL fifo pop

POP {PC}
.align 4
siobase: .WORD SIO BASE
ppbbase: .WORD PPB BASE
#1f defined (PICO RP2040)
vtoroffset: .word MOPLUS VTOR OFFSET
felse
vtoroffset: .word  M33 VTOR OFFSET
#endif

@ Spinlock 24 is first one available for exclusive
use.

spinbase: .WORD SIO BASE +

SIO SPINLOCKZ24 OFFSET

.align 4

.data

stackl: LFILL 0x800, 1, O
stackl end: .WORD 0



table: LFILL numEntries * sizeTabRow, 1,
emptyRow

Listing 13-5 Program to update the table of squares using both cores

This example is contrived in that each processor performs exactly
the same thing, leading to weird timing occurrences. Notice that after
writing the data to the table, ten NOP instructions are performed. If this
step is left out, then core 1 keeps ahead of core 0 and writes all the
entries in the table; see Exercise 4.

In the main program after starting core 1 and filling in its share of
table entries, perform a sleep to make sure core 1 is finished
processing. In a more robust system, a more deterministic manner
should be used to ensure core 1 is complete; see Exercise 5.

In this chapter code was written directly to the hardware registers;
however, there are Pico-series SDK functions that can be used as
follows.

A Word on the SDK

The Pico-series SDK contains routines to start work on the second CPU
core, as well as to use the interprocessor FIFOs and spinlocks. The SDK
routines are more robust than presented here since they have error
checking. Unless there are specific use cases not covered by the SDK,
use the routines contained there. The routines presented here are to
demystify how the Pico-series works and provide intuition-based
instructions for a deeper knowledge of how the operations work.

Summary

This chapter covered how to use the second CPU core contained on the
RP2040 or RP2350. Also, three new Assembly Language instructions
were mastered to help conserve power. How to send messages between
the two CPU cores and how to start programs running on the second
core were explained. Since both CPU cores access the same memory on
the Pico-series, how to use spinlocks to control shared access to avoid
the CPUs overwriting each other’s work was learned.



In Chapter 14, how to connect a Pico-series microcontroller to the

world wide web is covered.

Exercises

1.

Add error checking to launch_corel. Break out the sending and
receiving of data to a separate routine that will check that the
returned data is the same as the sent data and if not will return a
failure code starting the process over.

The fifo_push routine doesn’t check if the FIFO is full before
writing its data. Use the FIFO status register to check if the FIFO is
full and if so then wait until it has free space; enter a low-power
state while waiting, like how fifo_pop waits for data to arrive.

Each processor prints out the result of its calculation using printf.
However, a more normal approach is to have core 1 write its result
to the FIFO, have core 0 read it, and then use the result, in this case,
to print it. Change the program to work this way, so core 1 is purely
a computation service that’s called to calculate factorials.

Remove the ten NOP instructions after the table row is written.
How does that affect the results? Explain what's going on. How can
few NOPs maintain an even workload?

Change the program so that core 1 writes a value to the
interprocessor FIFO when it finishes its work. Next, have the main
program wait for this value rather than calling a sleep function.

Both programs in this chapter make use of FOR-type loops to
iterate through tables or to count through integers. Single step
through several of these loops in gdb to understand how they
work.

Make the timer interrupt version of the flashing lights program
from Chapter 11 more efficient by inserting a WFI when it doesn’t
have anything else to do.
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About the Pico-series Built-In Temperature Sensor
About Home-Brewed Communications Protocol

About the Server Side of the Protocol

About the Pico-series UART

Converting Integers to ASCII

Viewing the Main Program

About IoT, Wi-Fi, Bluetooth, and Serial Communications
Summary

Exercises

This chapter presents a complete realistic microcontroller project
written entirely in Assembly Language. A Pico-series device collects
data and then provides it to a central server. Since this is a book on
Assembly Language and not electronics, components built into the
Pico-series are used, rather than requiring extra components. The built-
in temperature sensor is used to collect data, and then the program
communicates with a server using UART 1. It's used rather than UARTO,
so that UARTO can be used for debugging and receive output from
printf statements. The assumption is that a Raspberry Pi is used for
debugging and development, so this is used as the server and a Python
program is written to poll the various devices connected to it for data.
The Raspberry Pi 5’s UART is connected with TX on pin 8 and RX on
pin 10. For the Raspberry Pi Pico-series, UART1 is connected to GPIO 4
and GPIO 5. This makes physical pin 6 TX and pin 7 RX. Connect the RX
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from the Raspberry Pi 5 to the TX on the Pico-series and the TX to the
RX.

This project gives an opportunity to build a slightly larger program
that uses everything learned to show how to put it all together. The
program is divided into separate modules that are presented one by
one. First of all, the Pico-series analog-to-digital converter (ADC) and
the built-in temperature sensor are presented.

About the Pico-series Built-In Temperature

Sensor

Many sensor devices have no digital logic and work in an analog
fashion, for instance, many temperature sensors, such as the Pico-series
built-in one, measure the voltage of a biased bipolar diode, which varies
depending on the ambient temperature. The Pico-series datasheet then
provides a formula to convert this voltage to temperature.

The Pico-series contains an analog-to-digital converter (ADC) that
measures the voltage received at a pin and returns a 12-bit number
proportional to the voltage range. The range of voltages for the
temperature sensor is 0-3.3V, so to convert from the 12-bit number to
voltage, multiply it by 3.3/212. The RP2350 Datasheet gives a formula to
convert this voltage into degrees Celsius.

Doing it this way requires floating-point arithmetic, which isn’t
preferred. Instead, combine these two formulas—see Exercise 4—to
derive a formula that can be evaluated easily using only integer
arithmetic:

Temp = 437 - (100 * rawADC) / 215

To divide the rawADC by 2.15, multiply both the numerator and
denominator by 100, which is a good trick to only use integer
arithmetic. This is performed in the calcTempCelc function that uses
the SDIV instruction on an RP2350 or the division coprocessor on an
RP2040.

The ADC has a status and control register that enables both the ADC
and the temperature sensor, although these are turned off by default to
save power. The ADC connects to four GPIO pins numbered 0-3 as well



as the temperature sensor on port 4. The ADC can either do a round-
robin scan on all its ports or read one port. Since only the temperature
sensor is used, the control register is set to use port 4. The initialization
routine builds up all the bits for this, so it can write it in one operation.

Note The ADC hardware registers are not single cycle with
separate clear and set functions; all the bits used must be set every
time it’s written to or read the port, add the bits used, and then write
the value back.

When operating on the ADC, it takes several CPU cycles to perform its
operation. This is why after initializing the ADC, the status register
must finish powering up before its ready for use. Similarly, when a
temperature reading is taken, the program waits until the ADC finishes
the operation.

Listing 14-1 contains the routines for programming the ADC
controller and reading the temperature. Place these routines in a file
called adctemp.S.

@

@ Module to interface to the RPxxxx ADC controller
@ as well as the built-in analog temperature
sensor.

@

#include "hardware/regs/addressmap.h"
#include "hardware/regs/adc.h"

.EQU TEMPADC, 4

.thumb func
.global calcTempCelc, initTempSensor, readTemp

@ Function to convert raw ADC data to degrees
celcius.

@ Calculates degrees = 437 - 100 * RO / 215

@




@ Registers:
@ Input: RO - raw 12-bit ADC value
@ Output: RO - degrees celcius
@ Other: R1 - values to multiply or divide
@
calcTempCelc:
PUSH {LR} @

needed since calls intDivide

MOV R1, #100

MUL RO, R1 @ RO
= RO * 100

MOV R1, #215
#1f defined (PICO RP2040)

BL intDivide @ RO
= RO / 215
#else

SDIV RO, R1
fendif

LDR R1, tempcalcoff

SUB RO, R1, RO @ RO
= 437 - RO

POP {PC}

@ Initialize the ADC and temperature sensor.
@ No input parameters or return values.
@ Registers used: R1, R2, R3
initTempSensor:
@ Turn on ADC and Temperature Sensor
@ We set the bits to enable the ADC, the temp
sensor
@ and select ADC line 4 (tempadc). All these bits
are
@ in the ADC status register.
MOV R1, #TEMPADC
LSL R1, #ADC CS AINSEL LSB
ADD R1, +#
(ADC CS TS EN BITS+ADC CS EN BITS)



LDR R2, adcbase
STR R1, [R2, #ADC CS OFFSET]

@ It takes a few cycles for these to start up, so
wait
@ for the status register to say it is ready.
notReady?2:LDR R1, [R2, #ADC CS OFFSET]

MOV  R3, #1

LSL  R3, #ADC CS READY LSB

AND R1, R3

BEQ notReady?2 @
not ready, branch

BX LR

Function to read the temperature raw value.
Inputs - none

Outputs: RO - the raw ADC temperature value
Function requests a reading from the status
reguiter

@ then waits for it to complete, then reads and
returns

@ the value.

®» ® @ @®

readTemp:

LDR R2, adcbase

LDR R1, [R2, #ADC CS OFFSET] @
load status register

ADD R1, #ADC_CS_START_ONCE_BITS @
add read wvalue once

STR R1, [R2, #ADC CS OFFSET] @
write to do it
notReady: LDR R1, [R2, #ADC CS OFFSET] @

wait for read to complete

MOV R3, #1

LSL R3, #ADC CS READY LSB @
done yet?

AND R1, R3

BEQ notReady



LDR RO, [R2, #ADC_RESULT_OFFSET] @
read result

BX LR @
return value

.align 4
adcbase: .word ADC BASE @
base for analog to digital
tempcalcoff: .word 437

Listing 14-1 Routines to activate the ADC controller and read the temperature

This chapter separates the various functions into separate source
code modules, to describe how to construct a larger program in a real
situation. Now there’s a raw ADC temperature reading, but before
processing it further, consider how to send it to the server.

About Home-Brewed Communications

Protocol

In this simple setup, the Pico-series board is connected directly to a
Raspberry Pi with short cables. The output from the UARTSs in both
devices is low power and not suitable for long cables. However, there
are many driver chips and devices available that can boost this signal to
standards, like RS-422 and RS-485 that support long cables made of a
twisted pair of wires. These can be hundreds of feet long and support
multiple devices attached like Christmas tree lights. The design of the
server-to-microcontroller protocol assumes this sort of architecture.
The server polls for each device in turn for its data. The microcontroller
only sends data to the server in response to a poll. The server sends out
a poll consisting of three characters:

1.
SOH: A start of header (ASCII character 1)

2.
ADDR: The address of the device polled, in this case ASCII “1” and
up

3. ETX: An end of text character (ASCII character 3)



The terminal answers with a data packet of the following form:

SOH: A start of header (ASCII character 1).

ADDR: The address of the device, in our case ASCII “1” and up.
STX: A start of text (ASCII character 2).

Message: The message data consists of printable ASCII characters.

ETX: An end of text character (ASCII character 3).

This is a simple protocol with no error checking—see Exercise 5—
that simply demonstrates the start of a more full-featured protocol.
Each device connected to the twisted wire pair needs to be configured
with its own unique address. In this case, this is a program constant, so
it needs to be changed and the program recompiled in each case. The
server will be implemented as a Python program that runs on the
Raspberry Pi.

About the Server Side of the Protocol

The server program is implemented in Python, as this is an easy and
popular way to program a Raspberry Pi. The routine to decode a
received packet is implemented as a state machine, where it changes
state if the correct character is received and returns to waiting for a
SOH character if it isn’t. The program polls a range of addresses and has
a one-second timeout, so if nothing is received in one second, it
assumes the terminal isn’t there and goes on to the next one.

The best way to understand how the program works is to single
step through the parsing of a received packet to see how and when the
state changes. Listing 14-2 contains this Python program that should be
stored in a file called serpolling.py and run from the Thonny Python
IDE.

import serial



import time
from enum import Enum

class protocolState (Enum) :

SOH =1
ADDR = 2
STX = 3
MSG = 4

def sendPollreadResp (addr) :
ser.write (bytearray([1l, addr, 3]))
state = protocolState.SOH
msg = bytes|()

while 1:
X = ser.read()
if x == b'':
return( bytearray ([0]) )
elif state == protocolState.SOH:
if x[0] ==
state = protocolState.ADDR
elif state == protocolState.ADDR:
if x[0] == addr:
state = protocolState.STX
else:
return( bytearray ([0]) )
elif state == protocolState.STX:
if x[0] ==
state = protocolState.MSG
else:
return( bytearray ([0]) )
elif state == protocolState.MSG:
if x[0] ==
return msg
else:

msg = msg + X

return ( bytearray ([0]) )



ser = serial.Serial (

# port = '/dev/serialO',
port = '/dev/ttyAMAO',
baudrate = 115200,
timeout=1

)

while 1:
for addr in range (49, 53):
msg = sendPollreadResp (addr)
print ( msg )
time.sleep (1)

Listing 14-2 The Python server program

Note The serial port’s device name has changed from Raspberry Pi
OS version to version. At the time of writing, it is /dev/ttyAMAO on
Bookworm; previously it was /dev/serial0. On Trixie it is
/dev/ttyACMO. It might change again in the future.

With the server polling done, now back to the Pico-series
microcontroller to see how to use the UART to receive the poll and
respond to it.

About the Pico-series UART

The UART device on the RP2040/RP2350 chip takes bytes and
serializes them and then sends them out on the wire bit by bit, or it
reads bit by bit and assembles the bits into bytes for the consuming
program. The UART contains receive and transmit FIFOs to buffer a few
characters. There are programs within the SDK samples to demonstrate
how to perform this functionality using the PIO coprocessors, but here
one of the two built-in UART controllers is used. Like all connected
hardware, there is a bank of hardware registers for controlling these.
There are two registers for setting the baud rate and the speed at which
the bits are put on the wire and then two control registers for setting all




the other properties. To send and receive data, there is a data register;
then there is a collection of status registers that show what is going on.

The UART controller commands several control pins usually used
with modems, but the Raspberry Pi Pico-series doesn’t have a way to
connect any of these to external GPIO pins, so a lot of the UART
controller’s functionality can be ignored. Listing 14-3 contains the
initialization routine for the UART along with routines to send and
receive bytes of data. Magic numbers are set to the baud rate registers.
The calculation of these is contained in the RP2350 Datasheet and left
to Exercise 8 for the general case.

The line control register UARTLCR_H sets

On the 8-bit mode, by setting the two WLEN bits to 1

The FEN bit which enables the FIFOs

Parity is not enabled, so it stays off.
The control register UARTCR sets the bits to

Enable the receiver
Enable the transmitter

Enable the UART
When reading a byte, the flag register UARTFR is used to determine
the following:

1.
When reading, if the receive FIFO isn’t empty, then there’s a

character.

When transmitting, if the transmit FIFO isn’t full, then it’s possible
to transmit.

These conditions are busy-waited on in the routines in Listing 14-3
that goes in a file called muart.S.

@



@ Routines to handle the UART
@

#include "hardware/regs/addressmap.h"
#include "hardware/regs/uart.h"
#include "hardware/regs/io bank0.h"
#include "hardware/regs/pads bankO.h"

.thumb func
.global 1initUART, readUART, sendUART

@ Function to initialize UARTI.
@ Sets 115200 baud, 8 bits, no parity.
@ Enables the devices and configures the gpio
pins.
@ No inputs or outputs.
@ Registers used: RO, R1.
@
initUART:
PUSH {LR}
LDR R1, uartlbase
@ Set baud rate to 115200
@ See the RP2040 datasheet for the magic
values 67 and 52
#1f defined (PICO RP2040)
MOV RO, #67
STR RO, [R1, #UART_UARTIBRD_OFFSET]
MOV RO, #52
STR RO, [R1, #UART_UARTFBRD_OFFSET]

#else
MOV RO, #81
STR RO, [R1, #UART_UARTIBRD_OFFSET]
MOV RO, #24
STR RO, [R1, #UART_UARTFBRD_OFFSET]
#fendif

@ Set 8 bits no parity



MOV RO, #
(UART UARTLCR H WLEN BITS+UART UARTLCR H FEN BITS)

STR RO, [Rl, #UART UARTLCR H OFFSET]

@ Enable receive and transmit

MOV RO, #3 @
enable TX and RX 1in one shot

LSL RO, #UART UARTCR TXE LSB

ADD RO, #UART_UARTCR UARTEN BITS

STR RO, [R1, #UART UARTCR OFFSET]

MOV RO, #4 @
GPIO4 pin is UART1 TX

BL gpiolInit

MOV RO, #5 @
GPIO5 pin is UART1 RX

BL gpiolInit

POP {PC}

@ Function to read a character from the UART.
@ Waits for a character (no timeout) then reads
the character.
@ Inputs: none
@ Outputs: RO - character read
@ Registers used: RO, R1, R2
readUART:

LDR R1, uartlbase @
UART hardware register bank

@ Wait for a character - that receive fifo
isn't empty

waitr: LDR RO, [R1, #UART_UARTFR_OFFSET] @
read flag register
MOV ~ R2, #UART UARTFR RXFE BITS @

bits for rx fifo empty

AND RO, R2

BNE waltr @
set means fifo empty



@ Read the character

LDR RO, [R1, #UART_UARTDR_OFFSET] @
read the received character
BX LR

@ Function to send a character from the UART.
@ Waits for room in the transmit fifo then sends
the character.
@ Inputs: RO - character to send
@ Outputs: none
@ Registers used: RO, R1l, R2, R3
sendUART:
LDR R1, uartlbase
@ Wait for transmitter free

waitt: LDR R3, [R1, #UART_UARTFR_OFFSET] @
read flag register
MOV~ R2, #UART UARTFR TXFF BITS @ tx

fifo full bits

AND R3, R2

BNE waltt @ set
means fifo full

@ Write the character

STR RO, [R1, #UART_UARTDR_OFFSET] @
send the character
BX LR

@ Function to initialize the GPIO to UART
function.
@ Inputs: RO - pin number
@
gpiolnit:
@ Enable input and output for the pin

MOV  R8, RO @
Save pin number

LDR R2, padsbank0

LSL R3, RO, #2 @ pin
* 4 for register address



ADD R2, R3 @
Actual set of registers for pin

MOV ~ R1, #PADS BANKO GPIOO IE BITS

LDR R4, setoffset

ORR R2, R4

STR R1, [R2, #PADS BANKO GPIOO OFFSET]

@ Set the function number to UART.

LSL RO, #3 @
each GPIO has 8 bytes of registers

LDR R2, iobank0 ©
address we want

ADD R2, RO @
add the offset for the pin number

MOV  R1,

#I0 BANKO GPIO4 CTRL FUNCSEL VALUE UART1 TX

STR R1, [R2, #IO BANKO GPIOO CTRL OFFSET]
#if HAS PADS BANKO ISOLATION
@ Remove pad isolation now that the correct
peripheral is set

LDR R2, padsbank0

MOV RO, RS @
restore pin numbere

LSL R3, RO, #2 @
pin * 4 for register address

ADD R2, R3 @

Actual set of registers for pin

LDR R4, clearoffset

ADD R2, R4

LDR R1, PBGIB

STR R1, [R2, #PADS BANKO GPIOO0 OFFSET]
#endif

BX LR

.align 4
uartlbase: .word UART1 BASE



gpiobase: .word SIO BASE @
base of the GPIO registers

iobank0: .word IO BANKO BASE @
base of io config registers

padsbankO: .word PADS BANKO BASE

setoffset: .word REG _ALIAS SET BITS

clearoffset: .word REG ALTIAS CLR BITS

#if HAS_PADS_BANKO_I SOLATION

PBGIB: .word PADS_BANKO_GPIOO_ISO_BITS
#fendif

Listing 14-3 The module for controlling serial communications

Note The baud rate division constants are conditionally compiled
since the RP2040 runs at 125MHz and the RP2350 at 150MHz.

The RP2350 requires the extra step of enabling the pads where
the code is conditionally compiled in, if needed.

Now that characters can be received and transmitted over the serial
connection, a utility math routine is required.

Converting Integers to ASCII

A routine is needed to convert binary integers into ASCII strings. This is
done backward, by first of all getting the least significant digit and next
the most significant digit last and then reversing the digits at the end.
This is done by repeatedly dividing by ten. The remainder is the next
digit, and the quotient will be divided again, until there are no more
digits. At the beginning, note if the number is negative and remember
that a negative sign is added at the end; then negate the number to
make it positive. The algorithm works for negative numbers, except for
where a digit is converted to ASCII by adding the ASCII “0” character.

At the end, add the negative sign if needed, and then reverse the
string to get it in a human-readable form. The routines for this and
division on the RP2040 are in Listing 14-4 that should go in a file called
mmath.S.



Some useful math support routines including:
1. Divide two integers using the coprocessor
2. Convert an integer to ascii (in decimal)

™ @® @ @ (®

#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"

.thumb func
.global intDivide, itoa

@ macro to delay 8 clock cyles,
@ the time it takes to divide
.macro divider delay

// delay 8 cycles

b 1f
1: b 1f
1: b 1f
1: b 1f
1:
.endm

#1f defined (PICO RP2040)
@ Function to divide two 32-bit integers

@ Inputs: RO - Dividend
@ R1 - Divisor

@ Outputs: RO - Quotient

@ R1 - Remainder
G

intDivide:

LDR R3, =SIO BASE

STR RO, [R3, #SIO DIV SDIVIDEND OFFSET]
STR R1, [R3, #SIO DIV SDIVISOR OFFSET]
divider delay

LDR R1, [R3, #SIO DIV REMAINDER OFFSET]
LDR RO, [R3, #SIO DIV QUOTIENT OFFSET]
BX LR



#fendif

@ Function to convert a 32 bit integer to ASCII

@ Inputs: RO - number to convert

@ R1 - pointer to buffer for ASCII
string

@ Outputs: R1 - contains the string

@

@ R7 - flag whether number positive or negative.
@ R6 - original buffer (since we increment Rl as

we go along).

@ R4 - holds R1 around function calls (since they
overwrite 1it)

@ R2, R3 - temp variables for reversing buffer

@

@ Builds the buffer in reverse by dividing by 10,
placing the

@ remainder in the buffer and repeating, then at
the end adding

@ a minus sign 1f needed. Then reverses the buffer

to get
@ the correct order
itoa:

PUSH {R4, Ro, R7, LR}

MOV R6, R1 @ original
buffer

MOV R7, #0 @ assume number
1s positive

CMP RO, #0 @ is number
positive

BPL convertdigits

MOV R7, #1 @ number is
negative

NEG RO, RO @ make number
positive

convertdigits:



digit

MOV R4,
MOV  R1,

R1
#10

#1f defined (PICO RP2040)
BL intDivide

felse

remainder

#fendif
to ascii

digit in

for next

(no more

finish up
next digi
finish:

negative?

sign

for null

MOV  R2,
SDIV RO,
MOV R7,
MUL  R7,
SUR RI1,
ADD R1,
STRB RI1,
buffer
MOV  R1,
ADD R1,
character
CMP RO,
digits)?

RO

R1

RO

R1

R2, R7
#IOI
[R4]

R4
#1

#0

BEQ finish

B convertdigits

t

CMP R7,
BEQ plus
MOV RO,
STRB RO,
ADD R1,

#0

#'_'

[R1]
#1

preserve R1
get least sig

Keep to calc

RO is quotient

convert digit
store ascii

restore R1
increment R1

are we done
yes, go to

no, loop to do

is the number

yes, add neg

store neg
next position



plus: MOV RO, #0 @ null
terminator
STRB RO, [R1] @ null terminate
SUB R1, #1 @ move pointer
before null

@ reverse the buffer

SUB R2, R1l, RO @ length of
buffer
revloop: LDRB RO, [R1] @ get chars to
reverse

LDRB R3, [R6]

STRB RO, [RO] @ store reversed

STRB R3, [R1]

SUB R1, #1 @ decrement end

ADD Ro, #1 @ increment
start

SUB R2, #2 @ done two
characters

BPL revloop @ still chars to
process

POP {R4, R6, R7, PC}

Listing 14-4 Routines for division and converting integers to ASCII

With this, the modules needed to perform the various individual
functions required are complete. Next, the main program that uses all
the functions is examined.

Viewing the Main Program

The main program implements a simple state machine to wait for a
valid poll from the server. When received, it builds and sends the
response message. It reads the temperature sensor and formats an
ASCII message of the form “Temp: 23”. The message sent conforms to
the protocol and is interpreted on the server. With the various modules
that are now available, the main program is fairly simple.



The state machine is a simplified Assembly Language version of the
one presented in the Python program. It is easier because there is no
message received from the server, just SOH Addr ETX. The complete
program is presented in Listing 14-5 and should go in a file called iot.S.

@

@ Assembly Language program to answer polls from
@ a server and respond with the current
temperature.

@

@ States for the state machine
.EQU SOH State, 1
.EQU ADDR State, 2
.EQU ETX State, 3

@ Special protocol characters
.EQU SOHChar, 1

.EQU STXChar, 2

.EQU ETXChar, 3

.EQU TermAddrChar, 49

.thumb func
.global main @ Provide
program starting address

main:
@ Init the devices
BL initTempSensor
BL initUART
loop:
@ Starting state is waiting for SOH
MOV~ R7, #SOH State @ state
waitforpoll:
BL readUART @ read next

char



@ switch( state = R7 )

CMP  R7, #SOH State
waiting for SOH?

BNE AddrStateCheck
address state

CMP RO, #SOHChar
read an SOH?

BNE waltforpoll
another character

MOV R7, #ADDR State
to address state

B walitforpoll
next character
AddrStateCheck:

CMP  R7, #ADDR State
waliting for address?

BNE EtxStateCheck
ETX state

CMP RO, #TermAddrChar
address?

BEQ gotaddr
gotaddr

MOV~ R7, #SOH State
back to SOH state

B waitforpoll
char
gotaddr: MOV ~ R7, #ETX State
address, so goto ETX state

B waitforpoll
char

EtxStateCheck:

CMP RO, #ETXChar
an ETX char?

BEQ gotetx
gotetx

are we
no, check
did we

no read
yes switch

walt for

are we
no, check
is it our
yes, goto
no, go
get next
got

get next

did we get

yes, goto



MOV R7, #SOH State @ no, go
back to SOH state

B waitforpoll @ get next
char

gotetx:
@ received a poll, so send a response packet
MOV RO, #SOHChar

BL sendUART @ send SOH

MOV RO, #TermAddrChar

BL sendUART @ send
Address

MOV RO, #STXChar

BL sendUART @ send STX

BL readTemp @ read the
temperature

BL calcTempCelc @ convert to
degrees C

LDR R1, =tempStr @ msg
template

ADD R1, #6 @ after
Temp:

BL itoa @ raw temp

value is still in RO
LDR R5, =tempStr

@ Copy the msg string pointed to by R5 out the
UART
nextchar:LDRB RO, [R5]

CMP RO, #0 @ String is
null terminated
BEQ done @ Are we

done (at null)?



BL sendUART @ No, then
send the character

ADD R5, #1 @ Next
character

B nextchar

@ Message is sent, so just need to send ETX
character
done:

MOV RO, #ETXChar

BL sendUART

@ This poll is finished, go back and wait for
another

B loop @ loop
forever
.data
@ template for temperature message string
tempStr: .asciz "Temp: "

Listing 14-5 The main driving program

The CMakelLists.txt file for this project is presented in Listing 14-6.
cmake minimum required (VERSION 3.13)
set (PICO_BOARD pico2 CACHE STRING "Board type")

include (pico_sdk import.cmake)
project (iot C CXX ASM)

set (CMAKE C STANDARD 11)
set (CMAKE CXX_ STANDARD 17)

pico sdk init ()

include directories (${CMAKE SOURCE DIR})



add executable (1ot
iot.S adctemp.S mmath.S muart.S

)

pico enable stdio uart(iot 1)
pico enable stdio usb (iot 0)

pico add extra outputs (iot)

target link libraries(iot pico stdlib)

Listing 14-6 CMakeLists.txt file for this project

Here the UART was used, since this connection is already available
to the Raspberry Pi; however, there are other options, such as wireless,
with some cost-versus-convenience trade-offs.

About 10T, Wi-Fi, Bluetooth, and Serial

Communications

The Internet of Things (IoT) often refers to connecting microcontrollers
to the Internet directly. There are wireless versions of both the Pico 1
and Pico 2, the W versions, which add Wi-Fi and Bluetooth. These add a
standard radio module to either board, but unfortunately these
modules are proprietary and don’t document their interfaces publicly.
To use these, the vendor’s supplied SDK needs to be used, which is
integrated into the Pico-series SDK. There are plenty of examples of
using the SDK to communicate with the Internet. The easiest and best
support is via MicroPython.

The advantage of the UART serial protocol used is that the
microcontroller doesn’t need to know the Wi-Fi password to connect,
similarly if Bluetooth is used as a wireless alternative. If Wi-Fi is used,
be careful as if the microcontroller is stolen the Wi-Fi credentials can be
extracted from the ROM.

Having all the microcontrollers wired or wirelessly connected to the
server, instead of using the Internet, prevents a lot of security problems.
When the server they are connected with accesses the Internet, all



Internet access is handled by a computer with a secure full-featured
operating system such as Linux.

All these solutions are possible, and it comes down to trade-offs of
cost, ease of installation, convenience, and security requirements. Often
serial wired communications are simple, cheap, and secure and work in
an electrically noisy environment, like a factory. However, running a
wire to every microcontroller can be a problem for homeowners, who
don’t want to redo their drywall and prefer everything to be handled by
their home Wi-Fi.

Summary

This chapter used all the things learned so far to create a complete
Assembly Language program to read data from a device and then
communicate it to a server program for processing or logging. The
program used the hardware registers directly and didn’t call any Pico-
series SDK functions. Although Assembly Language is typically used to
code highly specialized functions that either require high performance
or need to utilize machine instructions that aren’t available from high-
level languages, it is worth noting that in the microcontroller world, it is
practical to write the entire program in Assembly Language.

At this point, it should be clear how to write Assembly Language
code for Pico-series chips. The fundamentals of writing basic programs
and interfacing with hardware integrated into the Pico-series were
covered.

Now go forth and experiment. The only way to learn programming
is by doing. Think up some Assembly Language projects. The RP2040
and RP2350 are flexible devices that can interface to nearly anything
including any sensor or device that can be connected to the Arduino
and Raspberry Pi systems.

Exercises

1.
Change the program to report in degrees Fahrenheit rather than
degrees Celsius.

2. The function itoa isn’t safe, as it could overrun the provided buffer.
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to ensure it doesn’t write past the end of the provided buffer.

The Python program keeps adding to the msg variable until an ETX
character is received. Change the program to have a maximum
message length, which if exceeded will change the state back to
waiting for a SOH character. Why is this a good practice?

Combine the formula for converting raw ADC to voltage with the
temperature formula in the RP2350 Datasheet to derive the
temperature formula.

The simple protocol has no error checking. One technique is to add
an XOR checksum to the message. Simply XOR all the bytes of the
message together and include the checksum before the ETX
character. Implement this for the protocol. How to best ensure the
checksum isn’t one of the three special protocol characters?

The simple protocol has no authentication. Should a terminal need
to supply authentication information? What are the pros and cons
of adding this?

Typical temperatures are around room temperature or 20°C, two
digits positive. Set up some test cases for the itoa function to ensure
it works properly for negative temperatures. What is a good
selection of test cases to ensure it is working properly?

In the initUART function, the baud rate is hard-coded to 115,200.
Change the routine to take the baud rate as a parameter and
perform the calculations explained in the RP2350 Datasheet to
configure the two baud rate registers correctly.

Note The calculation must consider the difference in the RP2040
versus RP2350 clock speed.




APPENDIX A ASCII Character Set

Here is the ASCII Character Set. The characters from 0 to 127 are
standard. The characters from 128 to 255 are taken from code page
437, which is the character set of the original IBM PC.

Dec |Hex | Char |Description

0 00 [NUL |Null

1 01 |[SOH |Startof Header

2 02 |STX |Startof Text

3 03 |[ETX |End of Text

4 04 |EOT |End of Transmission
5 05 |ENQ |Enquiry

6 06 |[ACK [Acknowledge

7 07 |BEL |Bell

8 08 [BS Backspace

9 09 [HT Horizontal Tab

10 |0A |LF Line Feed

11 |0B |[VT Vertical Tab

12 |0C |FF Form Feed

13 (0D |CR Carriage Return

14 [(O0E |SO Shift Out

15 |OF |[SI Shift In

16 |10 |[DLE [|DatalLink Escape

17 |11 |[DC1 |Device Control1

18 |12 |[DC2 |Device Control 2

19 |13 |[DC3 |Device Control 3

20 |14 |DC4 |Device Control 4

21 |15 |NAK [Negative Acknowledge
22 (16 |SYN |Synchronize

23 |17 |ETB |End of Transmission Block
24 |18 |CAN |Cancel

25 |19 |EM |End of Medium




Dec |Hex |Char |Description
26 |1A |SUB [Substitute

27 |1B |ESC |Escape

28 [1C |FS File Separator
29 (1D |GS Group Separator
30 [1E |RS Record Separator
31 |1F |US Unit Separator
32 (20 |space |Space

33 |21 |! Exclamation mark
34 (22 |" Double quote
35 |23 |# Number

36 |24 |$ Dollar sign

37 125 % Percent

38 (26 |& Ampersand

39 (27 | Single quote

40 (28 |( Left parenthesis
41 (29 |) Right parenthesis
42 (2A |* Asterisk

43 |2B |+ Plus

44 |2C |, Comma

45 (2D |- Minus

46 |2E Period

47 |2F |/ Slash

48 |30 |0 Zero

49 |31 |1 One

50 (32 |2 Two

51 (33 (3 Three

52 |34 |4 Four

53 (35 |5 Five

54 (36 |6 Six

55 (37 |7 Seven

56 (38 |8 Eight

57 |39 |9 Nine




Dec |Hex |Char |Description
58 |3A Colon

59 (3B |; Semicolon
60 [3C |< Less than
61 |3D |= Equality sign
62 |3E |> Greater than
63 |3F |? Question mark
64 |40 |@ At sign

65 |41 |A Capital A

66 |42 |B Capital B

67 (43 |C Capital C

68 (44 |D Capital D

69 |45 |E Capital E

70 |46 |F Capital F

71 (47 |G Capital G

72 |48 |H Capital H

73 149 |I Capital I

74 [4A |] Capital ]

75 [4B |K Capital K

76 |4C |L Capital L

77 |4D |M Capital M
78 [4E |N Capital N

79 [4F |0 Capital O

80 (50 |P Capital P

81 (51 |Q Capital Q

82 |52 |R Capital R

83 (53 |S Capital S

84 |54 |T Capital T

85 |55 |U Capital U

86 |56 |V Capital V

87 |57 |W Capital W
88 |58 |X Capital X

89 |59 |Y Capital Y




Dec |Hex |Char |Description
90 |5A |Z Capital Z

91 (5B || Left square bracket
92 ([5C |\ Backslash
93 |5D |] Right square bracket
94 |[5E |~ Caret/circumflex
95 |5F |_ Underscore
96 (60 Grave/accent
97 |61 |a Small a

98 |62 |b Small b

99 (63 |c Small ¢

100 (64 |d Small d

101 |65 |e Small e

102 (66 |f Small f

103 (67 |g Small g

104 |68 |h Small h
10569 |[i Small i

106 [6A |j Small j

107 |[6B [k Small k

108 |6C |l Small 1

109 |6D |[m Small m
110 |6E |[n Small n

111 ([6F (o Small o

112 (70 |p Small p

113 |71 |q Small q

114 |72 |r Small r

115 (73 |s Small s

116 |74 |t Small t

117 |75 |u Small u

118 (76 |v Small v

119 (77 |w Small w
120 (78 |(x Small x

121 (79 |y Small y




Dec

Hex

Char

Description

122

7A

Small z

123

7B

Left curly bracket

124

7C

Vertical bar

125

7D

-~ |— [~ | N

Right curly bracket

126

7E

Tilde

127

7F

DEL

Delete

128

80

129

81

130

82

131

83

132

84

133

85

134

86

135

87

136

88

137

89

138

8A

139

8B

140

8C

—

141

8D

—

142

8E

>

143

8F

144

90

145

91

146

92

MR

147

93

o>

148

94

149

95

150

96

151

97

152

98

153

99




Dec

Hex

Char

Description

154

9A

155

9B

156

9C

157

9D

158

9E

159

9F

160

A0

161

Al

162

A2

O~

163

A3

=N

164

A4

=

165

A5

22

166

A6

1Y)

167

A7

168

A8

169

A9

170

171

AB

Y

172

AC

Ya

173

AD

174

AE

«

175

AF

»

176

BO

177

Bl

178

B2

179

B3

180

B4

181

B5

182

B6

183

B7

184

B8




1

I
4
1]

1

€1

-

'_

+.

F
I

L

L
E

JdL
1L

I

T

IL

E

1l

CE

Dec |Hex |Char |Description

185 |B9

186 |BA

187 BB

188 |BC

189 |(BD |!
190 |BE |4

191 |BF

192 (CO

193 (C1

194 (C2

195 |C3

196 |C4

197 | C5

198 |C6

199 (C7

200 (C8

201 (C9

202 |CA

203 (CB

204 |CC

205 |CD
206

207 |CF

208 |D0 |4
209 |D1

210 |D2

211 |D3

212 (D4

213 |D5

214 |D6

215 |D7 |4




r

a
3
r

Tt

o

1l
T

O
0

€

N

+

>

<

l

J

F2

F5

F7

Dec |Hex |Char |Description

216 (D8 |+
217 |D9

218 |DA

219 (DB |m

220 |DC |
221 (DD ||

222 |DE

223 |DF (B
224 |EO

225 |E1

226 |E2

227 |E3

228 |E4 |X

229 |E5

230 [E6

231 |E7

232 |E8

233 (E9

234 ([EA |Q
235 |EB |6

236 |EC

237 |ED |¢
238 |EE

239 |EF

240 (FO

241 |F1

242

243 |F3

244 |F4

245

246 |F6

247




Dec

Hex

Char

Description

248

F8

249

F9

250

FA

251

FB

252

FC

253

FD

254

FE

255

FF




Appendix B Assembler Directives

This appendix lists a useful selection of GNU Assembler directives. It
includes all the directives used in this book and a few more that are
commonly used.

Directive | Description

align Pad the location counter to a particular storage boundary.

.ascii Defines memory for an ASCII string with no NULL terminator.
.asciz Defines memory for an ASCII string and adds a NULL terminator.
.byte Defines memory for bytes.

.data Assembles following code to the end of the data subsection.

.double |Defines memory for double-precision floating-point data.

.dword |Defines storage for 64-bit integers.

.else Part of conditional assembly.

.elseif Part of conditional assembly.

endif Part of conditional assembly.

.endm End of a macro definition.

.endr End of a repeat block.

.equ Defines values for symbols.

fill Define and fill some memory.

float Define memory for single-precision floating-point data.

.global |Make a symbol global, needed if reference from other files.

Jhword | Defines memory for 16-bit integers.

Jdf Marks the beginning of code to be conditionally assembled.

Ainclude |Merge afile into the current file.

int Define storage for 32-bit integers.

Jong Define storage for 32-bit integers (same as .int).

.macro Define a macro.

.octa Defines storage for 64-bit integers.
.quad Same as .octa.
.rept Repeat a block of code multiple times.

set Set the value of a symbol to an expression.




Directive

Description

short Same as .hword.
single Same as .float.
text Generate following instructions into the code section.

word

Same as .int.




Appendix C Binary Formats

This appendix describes the basic characteristics of the data types used
in this book.

Integers

The following table provides the basic integer data types used. Signed
integers are represented in the two’s complement form.

Table C-1 Size, alignment, range, and C type for the basic integer types

Size [ Type Alignmentin |Range C Type
Bytes
Signed 1 -128to 127 signed char
Unsigned | 1 0to 255 char
16 |Signed 2 -32,768t0 32,767 short
16 |Unsigned |2 0 to 65,535 unsigned
short
32 |[Signed |4 -2,147,483,648 to 2,147,483,647 int
32 |Unsigned |4 0to 4,294,967,295 unsigned int
64 |[Signed |8 -9,223,372,036,854,775,808 to long long
9,223,372,036,854,775,807
64 |Unsigned |8 0to 18,446,744,073,709,551,615 unsigned long
long

Floating Point

The RP2040/RP2350 floating-point routines use the IEEE-754
standard for representing floating-point numbers. All floating-point
numbers are signed.

Addresses
All addresses or pointers are 32-bit.

Table C-2 Size, positive range, and C type for floating-point numbers

Size [ Range C Type
32 |1.175494351e-38 to 3.40282347e+38 float




Size

Range

C Type

64

2.22507385850720138e-308 to 1.79769313486231571e+308

double

Table C-3 Size, range, and C type of a pointer

Size

Range C Type

32

0 to 4,294,967,295 void *




Appendix D The ARM Instruction Set

This appendix lists the core ARM Cortex-M-series 32-bit instruction set,
with a brief description of each instruction.

Instruction Description

ADC,ADD Add with Carry, Add

ADR Load program or register-relative address (short range)
AND Logical AND

ASR Arithmetic Shift Right

B Branch

BIC Bit Clear

BKPT Software breakpoint

BL Branch with Link

BLX Branch with Link, change instruction set
BX Branch, change instruction set

CMN, CMP Compare Negative, Compare

CPSID Disable interrupts

CPSIE Enable interrupts

DMB, DSB Data Memory Barrier, Data Synchronization Barrier
EOR Exclusive OR

ISB Instruction Synchronization Barrier
LDM Load Multiple Registers

LDR Load Register with Word

LDRB Load Register with Byte

LDRH Load Register with Halfword

LDRSB Load Register with Signed Byte

LDRSH Load Register with Signed Halfword
LSL, LSR Logical Shift Left, Logical Shift Right
MOV Move

MRS Move from PSR to Register

MSR Move from Register to PSR

MUL Multiply




Instruction

Description

NEG Two’s complement

NOP No Operation

ORR Logical OR

PUSH, POP PUSH registers to stack, POP registers from stack
REV Reverse bytes in word

REV16, REVSH |Reverse bytes in halfword

ROR Rotate Right Register

SBC Subtract with Carry

SEV Set Event

STM Store Multiple Registers

STR Store Register with Word

STRB Store Register with Byte

STRH Store Register with Halfword
SUB Subtract

SvVC Supervisor Call

SXTB, SXTH Signed extend

TST Test

UXTB, UXTH Unsigned extend

WFE, WFI Wait for Event, Wait for Interrupt

YIELD

Yield




Appendix E Answers to Exercises

This appendix has answers to selected exercises. For program code,
check the online source code at the Apress GitHub site.



Chapter 2

1. 0100 1101 0010, Ox4d2



Chapter 4

1. 177 (Oxbl), 233 (0xe9)
2. =14, -125

3. 0x78563412

4. 0x118

5.

0x218



Chapter 6

2. The LDR instruction either provides an offset to the PC directly from
the address or creates the address in the code section using indirection
from the PC to load this value.



Chapter 9

1. 0x40044000, i2c.h

2. The more pins, the larger the size of the
board. This is a trade-off to keep the board small
but still provide a great deal of flexibility.



Chapter 10

1. 65104, 78,125
2. 62,500,000Hz or ©62.5MHz on an RP2040



Index

A

ADC
See Analog-to-digital converter (ADC)
ADD instruction 26
Addition instruction 76
Addresses 326
Add with carry 78,79
Advanced peripheral bus (APB) 178
Analog-to-digital converter (ADC) 283-285
APB
See Advanced peripheral bus (APB)
Arithmetic shift right (ASR) 74, 81
ARM instruction set 327
ARM processor
components 18
defined 17
designers 18
instruction format 26-28
manufacture chips 18
RISC 17
ASCII character set 311
ASR
See Arithmetic shift right (ASR)
Assembler directives 323
AssemblerTemplate 171
Assembly language 1,159
ARM instruction format 26-28
asm statement 170
computers and numbers 21-24
CPU registers 25,26
data statement 41
embedding code 169
GCC assembler 29, 30
goals 24



instr and outstr registers 172
instructions 40

parameters 171

Pico-series C/C++ SDK 35-38
program logic 41,42
reasons 19-21

reverse engineering 43-46
routines 167,168
RP2040/RP2350 memory 28, 29
starting comment 38, 39
starting program 39

Visual Studio Code 30-35

B

BBC microcomputer 17

Bi-Endian 71

Big-Endian 70

Big-vs. little-Endian 70-72

Bluetooth 307

Branch and Exchange instruction (BX instruction) 135, 142
Branch instructions 93, 94, 108, 141-143

C
Calculation lanes 247

S
Called function 140
Calling routine 140
Carry flag 73
CISC

See Complex instruction set computer (CISC)
Clobbers 171
Clock divider 210,211
CMake 49-53
CMP instruction 94
Complex instruction set computer (CISC) 17
Concurrency 181-183
Conditional logic 91
Condition flags 92

Control register 292




CPSR
See Current program status register (CPSR)
CPU registers 25, 26
Current program status register (CPSR) 26, 73,78,79,92,93
C wrapper functions 165

D

Data types
floating-point 326
integers 325

Design patterns 101,102

Digital signal processor (DSP) 244
Division 243, 244

E

EDVAC
See Electronic Discrete Variable Automatic Computer (EDVAC)
Electronic Discrete Variable Automatic Computer (EDVAC) 67

F

Factorials 264
Fibonacci numbers 264
FIFO
See First-in-first-outs (FIFOs)
First-in-first-outs (FIFOs) 259, 261
Floating-point 251, 252
For loop 95, 96
FPU registers
arithmetic operations 253
C and printf 256, 257
instructions 252
sample program 253-256
Functions 133
branch with link 135, 136
call algorithm 140, 141
myfunc 136,137

parameters 13




G

GDB
See GNU debugger (GDB)
GNU debugger (GDB)
breakpoint command 60, 63
commands 65
debugging 57,58
defined 55
disassemble program 61
memory 63
registers command 61
running openocd server 58
running program 59
SDK code 60
VS code extension 55,56
GNU Make 53
GotoLabels 171
Goto statement 91

H

Hardware memory-mapped registers 175
Hardware registers 180-183, 245,272
HelloWorld program 31, 35

Hexadecimal digits 22

Host computer 2,5,11

LL],K

If/then/else statement 97, 98
Indirect memory access 29
Inline function 165
InputOperands 171
Input shift register (ISR) 205
Instruction pipeline 28
Integers to ASCII conversion
AND 106
decimal 107

defined 102




expressions in immediate constants 107
printing 104
pseudo-code 103
registers and updating memory 106
storing register to memory 107
Internet of Things (IoT) 307
Interpolation
adding array of integers 245-247
algorithms 244
DSPs 244
floating-point 251, 252
hardware registers 245
loading and saving FPU registers 252-257
numbers 248-250
Interpolator 247
Interprocessor communications 261, 262
Interrupts
calling process 220
internal 221,222
overview 220
priorities 222,223, Q
processor state 225,226
RP2040 vs. RP2350 221
SDK 239
SVCall 238
timer, flashing LEDs
alarm interrupt handler 228
complete program 231-238
handler and enabling IRQ0 230
RP2040 alarm 229, 230
state variable 228
Interrupt vector table (IVT) 220, 223-225
[oT
See Internet of Things (IoT)
ISR
See Input shift register (ISR)



L
Last in first out (LIFO) 13

LDR instruction 116,118,124
LIFO

See Last in first out (LIFO)
Line control register 292
Link register (LR) 135
Little-Endian 71,72
Load-store architecture 111
Load/store instructions 119
Logical operators

AND 100

BIC 101

combination of input bits 99

EOR 100

MVN 101

ORR 100

tools 99

TST 101
Logical shift left (LSL) 74, 81
Logical shift right (LSR) 74, 81
Long division algorithm 108
Loops

For loop 95, 96

While loop 96
LR

See Link register (LR)
M

Machine learning 248
Macros
capabilities 151
defined 154
include directive 154
labels 155
reasons 156
uppercase program 151, 153



Magic numbers 292
Memory 63
addresses 111
RP2040/RP2350 28, 29
Memory contents
align data 115
byte statement 112
converting uppercase 124-130
data types 113
directives 112,113
escape character sequences 114
formats 112
indexing 121-124
loading and storing multiple registers 130, 131
loading data 118-120
load register 116
GPIO pins 117
operating system 117
PC-relative addressing 118
mechanisms 114
numbers 112
prefix operators 113
small read-only data access 120,121
store register 124
Microcontrollers 2,5,42,159, 241, 288,307
Minicom program 37, 38
Mnemonics 95
MOV/ADD/Shift example 82-88
MOV instruction
move immediate 75
moving data from one register to another 76
M-series CPUs 18, 24
Multiplication 242, 243
Multiprocessing
complete program 265-270
factorials 264
features 259



Fibonacci numbers 264

interprocessor mailboxes 261, 262

power saving 259, 260

printf statement 271

routines, interprocessor FIFO mailbox 270,271
SDK 281

second CPU cores 262,263

spinlocks 272-280
Multi-tasking operating systems 6

N

Nested vector interrupt controller (NVIC) 220
Nesting function calls 136,137
NMI interrupt 222
NVIC
See Nested vector interrupt controller (NVIC)

o

One’s complement 70
OSR
See Output shift register (OSR)
OutputOperands 171
Output shift register (OSR) 199

PQ
Pad isolation 184, 185
Pads 183
PC
See Program counter (PC)
PC-relative addressing 118
PIO
See Programmable 1/0 (PIO)
Pointers 326
Print statements 54, 55
Program counter (PC) 29,117
Programmable I/0 (PIO) 4
architecture 194-196
block diagram 194, 195



Im

configuration options 215, 2
flashing LEDs 197-203
IN 205

instruction memory slots 194
instructions and operands 196, 197
IRQ 208, 209

JMP 204

MOV 207,208

offload processing 193

OUT 205, 206

PULL 207

PUSH 206

SET 209

side-set 213, 215

state machines 193
timing

clock divider _0 Ll

delay operand 211-213
Wait 204

R

Raspberry Pi OS’s galculator 23
Raspberry Pi Pico series
assumption 283
calculator 69, 70
C/C++ SDK 35-38
C header files 177,178
converting integers to ASCII 298-302
debugging 6,7,9
external pins 178
hardware /0 capabilities 159
hardware peripheral functions 179
helper script files 13,14
home-brewed communications protocol 288, 289
host computer 5
interrupt sources
See Interrupts



main program 302-306
memory map 175,176
modules 4
pins 18,19,and 20 178
prerequisite skills 12
RP2040 and RP2350 chips 3-5
SDK 11,307
server side protocol 289-291
setting pin function 180, 181
software installation 10
soldering and wiring 7, 8
stacks 134,135
temperature sensors 284-288
UART 283, 292-298, 307
Visual Studio Code 10
Reduced instruction set computer (RISC) 17, 24, 25
Register destination (Rd) 77
Registers
ASCII characters 102
CPU 25, 26
floating-point 251
interpolation 245, 247
{reglist} parameter 134
rules 139
shift and rotate 72-75
SIO pins 182
storing memory 107
Resistors 161
Return values 138
Reverse engineering 43-46
RISC
See Reduced instruction set computer (RISC)
Rotate right (ROR) 74, 81
RP2040/RP2350 chips
brands 3
competitors’ microcontrollers 4
custom program 6




datasheet 250

high-level memory map 176
interpolator coprocessors 244
interrupts 221

I/0 hardware components 193
mathematical components 241, 242
memory 28, 29

power processing 5

programming 3

S

SDK
See Software Developer’s Kit (SDK)
Serial communications 293,307
Shift and rotate registers
carry flag 73
cases
arithmetic shift right 74
logical shift left 74
logical shift right 74
rotate right 74
rotate right extend 75
defined 72
examples 81
instructions 80
32 bits of register 81, 82
Side-set 213,215
Silicon chips 17
SIO pin
complete program 187,188,190, 191
configuration 185
initialization 185
turning on/off 186

flashing LEDs 162-167
Spinlocks
code to lock 272



code to release 273
hardware registers 272
memory table 273-275,277-280
overview 272
shared resources 272
Stack pointer (SP) 134, 148, 224
Stacks

defined 133

frames

example L 151
PUSH/POP 149
symbols L
variables 149

Ul

Pico-series 134,135
State machine 302
Store byte (STRB) instruction 107
STR instruction 124
Subtraction 80
Supercomputers 18
Supervisor call (SVC) 238
SVC
See Supervisor call (SVC)

System on a chip (SoC) 4
T

Temperature sensors 284-288
Thumb instructions 24
Two’s complement 67-69

U

Unconditional branch 91
Unsigned integers 67
Uppercase function 124-130,143-148

Vv
Visual Studio Code 10-12,30-35, 55

w




While loop 96

Wi-Fi 307

Wire flashing LEDs
circuitry 160
GPIO pin 160
resistors 161
schematics 161
SDK functions 162-167

X,YZ
X factor 142
XOR register 183
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